What has been engineered is a cellulose
processing bacteria able to produce isobutenol in one step. This is good news and perhaps opens the door
to a prospective farm based protocol in which cellulose is ground up and
digested to specifically produce fuel grade isobutanol.
We certainly wish to avoid
hauling plant waste anywhere. A waste to
fuel system is badly needed for agriculture, no matter what else develops. Farm energy is best served with burnable
biofuels for the foreseeable future if we can solve the conversion challenge.
Two problems are solved. The waste is easily consumed and process fuel
is made available right where it is needed.
This fuel has the added advantage of overcoming the disadvantages of
ethanol.
Researchers use bacteria to produce potential gasoline replacement
directly from cellulose
By Darren
Quick
00:23 March 10, 2011
With the situation in Libya
causing a spike in fuel prices worldwide there's some good biofuel-related
news out of the U.S.
Department of Energy's BioEnergy
Science Center
(BESC) that could help to reduce many countries' dependence on oil imports. For
the first time, BESC researchers have succeeded in producing isobutanol
directly from cellulosic plant matter using bacteria. Being a higher grade of
alcohol than ethanol, isobutanol holds particular promise as a gasoline
replacement as it can be burned in regular car engines with a heat value
similar to gasoline.
Due in large part to its natural defenses to being chemically
dismantled, cellulosic biomass like corn stover and switchgrass, which is
abundant and cheap, has been much more difficult to utilize than corn or sugar
cane. This means that producing biofuel from such biomass involves several
steps, which is more costly than a process that combines biomass utilization and
the fermentation of sugars to biofuel into a single process.
Building on earlier work at UCLA in creating a synthetic pathway for isobutanol production, the BESC researchers
managed to achieve such a single-step process by developing a strain of
Clostridium cellulolyticum, a native cellulose-degrading microbe that could
synthesize isobutanol directly from cellulose.
"In nature, no microorganisms have been identified that possess
all of the characteristics necessary for the ideal consolidated bioprocessing
strain, so we knew we had to genetically engineer a strain for this
purpose," said Yongchao Li of Oak Ridge National Laboratory.
The research team chose Clostridium cellulolyticum, which was
originally isolated from decayed grass, because it has been genetically
engineered to improve ethanol production, which has led to additional more
detailed research. While some Clostridium species produce butanol and others digest
cellulose, none produce isobutanol, an isomer of butanol.
"Unlike ethanol, isobutanol can be blended at any ratio with
gasoline and should eliminate the need for dedicated infrastructure in tanks or
vehicles," said James Liao, chancellor's professor and vice chair of
Chemical and Biomolecular Engineering at the UCLA Henry Samueli School of
Engineering and Applied Science and leader of the research team. "Plus, it
may be possible to use isobutanol directly in current engines without
modification."
Earlier this week, U.S. Energy Secretary Steven Chu visited the BESC to
congratulate the research team, saying, "Today's announcement is yet
another sign of the rapid progress we are making in developing the next
generation of biofuels that can help reduce our oil dependence. This is a
perfect example of the promising opportunity we have to create a major new
industry – one based on bio-material such as wheat and rice straw, corn stover,
lumber wastes, and plants specifically developed for bio-fuel production that
require far less fertilizer and other energy inputs."
The team's work is published online in Applied and Environmental
Microbiology.
No comments:
Post a Comment