Extra oxygen merely meant that bugs
could become larger and of course they did so.
We could run some multi generational experiments ourselves in an
appropriate enriched atmosphere to demonstrate the point.
Perhaps we should grow us some
giant dragonflies for our amusement. On
the other hand I suggest we skip the giant mosquitoes. Of course, dragon flies do subsist on
mosquitoes so that may be a bit tricky.
Perhaps this can be a great
program for a sealed tropical environment as a commercial project. Folks would support and come to observe a burgeoning
insect colony that naturally changed year by year.
Why Giant Bugs Once Roamed the Earth
Dragonflies got as big as birds to avoid oxygen overdose, study
hints. And then maybe not!
Dragonflies (file illustration) the size of seagulls once buzzed
prehistoric Earth.
Illustration by Ned M. Seidler, National Geographic
Ker Than
Published August 8, 2011
Predatory dragonflies the size of modern seagulls ruled the air 300
million years ago, and it's long been a mystery how these and other bugs grew
so huge.
The leading theory is that ancient
bugs got big because they benefited from a surplus of oxygen in Earth's
atmosphere. But a new study suggests it's possible to get too much of a good
thing: Young insects had to grow larger to avoid oxygen poisoning.
"We think it's not just because oxygen affects the adults but
because oxygen has a bigger effect on larvae," said study co-author Wilco Verberk of Plymouth University
in the U.K.
"So a larval perspective might lead to a better understanding of
why these animals existed in the first place, and maybe why they disappeared."
Baby Bugs Can't Control Their Gases
Fossils show that giant dragonflies and huge cockroaches were common
during the Carboniferous
period, which lasted from about 359 to 299 million years ago. (Explore
a prehistoric
time line.)
During this time, the rise of vast lowland swamp forests led to
atmospheric oxygen levels of around 30 percent—close to 50 percent higher than
current levels.
According to previous theories about insect gigantism, this rich oxygen
environment allowed adult bugs to grow to ever larger sizes while still meeting
their energy needs. (Related: "Did
Rising Oxygen Levels Fuel Mammal Evolution?")
For the new study, Verberk and colleague David Bilton instead focused
on how varying oxygen levels affect stonefly larvae, which, like dragonflies,
live in water before becoming terrestrial adults. Higher concentrations of
oxygen in air would have meant higher concentrations dissolved in water.
I hate to be picky, but this is
unlikely to be true at all.
The results showed that juvenile stoneflies are more sensitive to
oxygen fluctuations than their adult counterparts living on land.
This may be because insect larvae typically absorb oxygen directly
through their skin, so they have little or no control over exactly how much of
the gas they take in. By contrast, adult insects can regulate their oxygen
intake by opening or closing valve-like holes in their bodies called spiracles.
While crucial for life, oxygen can be poisonous in large quantities:
Humans exposed to excess oxygen can suffer cell damage leading to vision
problems, difficulty breathing, nausea, and convulsions.
It's likely the larvae of many ancient insects also passively absorbed
oxygen from water and were not able to regulate their oxygen intake very well—a
big danger when oxygen levels were so high.
One way to decrease the risk of oxygen toxicity would have been to grow
bigger, since large larvae would absorb lower percentages of the gas, relative
to their body sizes, than small larvae.
"If you grow larger, your surface area decreases relative to your
volume," Verberk explained.
Lower Oxygen Led to Poor Bug Performance?
The new theory could also explain why giant insects continued to exist
even after Earth’s atmospheric oxygen levels began decreasing, he said.
"If oxygen actively drove increases in body mass to avoid
toxicity, lower levels would not be immediately fatal, although in time, they
will probably diminish performance of the larger insects," since adults
would have evolved to require more oxygen and would get sluggish in air with
lower levels, Verberk said.
"Such reduced performance will eventually have made it possible
for other species to outcompete the giants."
The giant-insect study was published
online in late July in the journal PLoS ONE.
No comments:
Post a Comment