Our civilization is
preparing to make one of the most remarkable transitions in human history. We will be shifting out of senescence as destiny
to living healthy ongoing lives that can reach as much as one thousand
years. I strongly suspect we actually
started off that way but it was not maintained and ended just before the rise
of the Bronze Age in archeology. Thus my
confidence in raising the bar of expectation.
We are certainly going
to see pretty quickly a leap forward in life expectancy where the century mark
becomes the expected norm and where one actively operates a small garden to maintain
healthy vigor as well. I really think
that we are literally wired to do this.
Recall the Garden of
Eden was a garden and there I suspect that what I am describing held true. Thus our leap forward is actually a leap backward
to recreate worldwide the original Garden environment on a global scale. The original Garden operated for perhaps
165,000 years if our location and dating mean anything at all.
For background here
do google my recent remarks regarding Eden in South Africa.
How to live forever
21 April 2014
Frank Swain
If more and more people are living past 100, how much older can we
survive to, in theory, asks Frank Swain. And what would it take to achieve this
in practice?
Are people foolish to crave everlasting life? Writer Theodore Powys'
reflections on immortality capture the paradox - and downsides - of living
forever, says philosopher John Gray.
On the Art of Prolonging Life was penned by a Dr Huseland (“one of the
soundest minds in Germany”) in 1797, concluding eight years of study on the
topic. He identified among the many factors associated with long life: a
moderate diet that was rich in vegetables and short on meat and sweetened
pastries; an active lifestyle; good care of your teeth; weekly bathing in
lukewarm water with soap; good sleep; clean air; and being born to parents who
themselves lived long lives. Toward the end of his essay, translated for
the American Review, the doctor wistfully speculated that “human life may be
prolonged to double the extent of what is supposed to be its present limits,
without losing activity and usefulness.”
By Huseland’s estimates, half of all children born would die before
their tenth birthday, an alarmingly high mortality rate. However, if the child
could run the gauntlet of youth fraught with smallpox, measles, rubella, and
other childhood diseases, they stood a fair chance of making it all the way to
their mid-thirties. In ideal circumstances, Huseland thought it possible that a
lifetime could stretch for two hundred years.
Is there more to these claims than the fanciful imagination of an 18th
century doctor? James Vaupel doesn’t think it’s out of the question. “Life
expectancy is increasing two-and-a-half years every decade,” he says. “That’s
twenty five years every century.” As director of the Laboratory of Survival
and Longevity at the Max Planck Institute for Demographic Research in Rostock,
Germany, Vaupel studies longevity and survival in human and animal populations.
He tells me that the pattern of improvements to mortality has shifted greatly
in the past 100 years. Before 1950, most of the gains in life expectancy were
made by combating the high infant mortality that Huseland noted. Since then,
however, it’s been the over-60s and most recently the over-80s who’ve seen the
greatest decreases in mortality.
In other words, we are not just surviving childhood in greater numbers,
we’re living longer – a lot longer.
Age complex
Worldwide, the number of centenarians – people over the age of 100 – is
predicted to increase
10-fold between 2010 and 2050. As Huseland testified, a strong
component in whether you’ll live to see this milestone lies in the age of your
parents; that is, there is a genetic component to long life. But the rise in
centenarians can’t be explained by genetics alone, which clearly haven’t
changed much in the last couple of centuries. Rather, it’s a host of
improvements to our lives that cumulatively improve our chances of living
longer and stronger, many of which echo the factors identified by Huseland. The
reasons include better healthcare, improving medical treatments, public health
measures like cleaner water and air, better education, and improved standards
of living such as houses that are warm and dry. “Mostly it’s down to having
more medicine and money,” says Vaupel.
Recent decades have seen significant improvements in life expectancy
for the elderly (Thinkstock)
Nonetheless, the gains offered by better healthcare and living
conditions still leave many people dissatisfied, and the appetite for
life-extension therapies shows no sign of abating. One popular approach is
caloric restriction. In the 1930s, researchers noticed that mice fed on a
near-starvation diet lived far longer than those allowed to eat until full. A
subsequent study on rhesus monkeys also showed this, but this was
contradicted by a 20-year-long
study by the US National Institute on Ageing, which found that
although rhesus monkeys kept on a calorie-restricted diet developed age-related
diseases slightly later than controls, they did not live longer on average. The
authors noted that though caloric restriction in long-lived animals conferred
some benefits, these were subject to a complex interplay of genetics, nutrition
and environmental factors.
Another great hope is resveratrol, a chemical produced naturally by
plants, notably in the skin of grapes. Whether vineyards can be said to hide
the fountain of youth, however, remains doubtful. The chemical has been
noted to produce similar health benefits to caloric restriction in animal
models, but as yet, no study has shown that taking resveratrol can increase
human lifespan.
No limits
But why do we age at all? “Every day we suffer damage and don’t
perfectly repair it,” explains Vaupel, “and this accumulation of unrepaired
damage is what causes age-related disease.” It’s not a trait that is shared by
all living organisms. Hydra for example – a group of simple, jellyfish-like
creatures – are able to repair almost all the damage they suffer, and readily slough
cells that are too injured to heal. In humans, it’s damaged cells like these
that can give rise to cancerous tumours.
“Hydras allocate resources
primarily toward repair, rather than reproduction,” says Vaupel. “Humans, by contrast, primarily direct resources
toward reproduction, it’s a different survival strategy at a species level.”
Humans may live fast and die young, but our prodigious fertility allows us to
overcome these high mortality rates. Now that infant mortality is so low,
there’s really no need to channel so many resources into reproduction, says
Vaupel. “The trick is to up-regulate repair instead of diverting that energy
into getting fat. In theory that should be possible, though nobody has any
idea about how to do it.” If the steady accretion of damage to our cells can be
arrested – so-called negligible senescence – then perhaps we won’t have an
upper age limit. If that’s the case, there isn’t any reason why we should have
to die at all.
Hydra can repair almost all its damaged cells, shedding any that are
too injured to heal (Science Photo Library)
“It would be wonderful to get to a world where all death is optional.
Right now, essentially all of us are sentenced to the death penalty, even
though most of us have done nothing to deserve it.” So says Gennady Stolyarov,
transhumanist philosopher and author of Death Is Wrong, a controversial
children’s book that encourages young minds to reject the fatalist notion that
death is inevitable. Stolyarov is fervently opposed to what he sees is simply a
technological challenge waiting for the appropriate level of money and manpower
to solve it.
Agents of change
One focus for technological intervention are telomeres. These caps
on chromosomes shorten every time your cells divide, putting a hard limit on
the number of times your cells can reproduce themselves. Not all animals
experience this telomere shortening, the hydra being one of them. However,
there are good reasons to have these limitations in place. Occasional mutations
can allow cells to divide without shortening their telomeres, giving rise to
“immortal” cell lines. However, in an uncontrolled situation, these immortal
cells would be very bad news for the person they are in, bloating into
cancerous tumours.
“One hundred and fifty thousand people in the world die each day, two
thirds of those die from causes related to senescence,” Stolyarov tells me. “So
even if we can hasten the arrival of these technologies to achieve negligible
senescence by one day, we will have saved a hundred thousand lives.” The author
quotes geronotology theoretician Aubrey de Grey – something of a celebrity in
the world of life extension – as stating that there is a 50% chance of
achieving negligible senescence in
the next 25 years. “There’s a good chance that it will happen in our
lifetimes, before we experience the most deleterious effects of senescence,”
says Stolyarov.
“Achieving negligible human senescence in 25 years is possible,” says
Vaupel, “but highly unlikely.” He concedes that it might be possible to rapidly
accelerate life expectancy through medical breakthroughs. But he warns that
equally, there may be difficulties in the future that we don’t anticipate.
“Disease, economic crisis, and climate change might cause increases in
mortality,” he says.
Telomeres, the protective ends of chromosomes, are linked to ageing of
cells (Science Photo Library)
Stolyarov is hoping to kindle a small spark of hope into an eternal
flame. “What I think is necessary right now is a determined push to
dramatically accelerate the pace of technological progress,” he says. “We have
a fighting chance right now, but in order to make it happen we have to be the
agents of change.”
For now, readers will have to take comfort in the knowledge that there
are well-documented ways to try to avoid the Western world’s two biggest
killers – heart disease and cancer – through a combination of exercise, healthy
eating, and moderation when it comes to alcohol and red meat. Very few of us
actually manage to live by these criteria, perhaps because we think a shorter
life filled with rich food and wine is a worthy trade. Which leads to the
conundrum – if eternal life was possible, would you be willing to pay the
price?
No comments:
Post a Comment