Recall we are replacing the empirical with a mathematical construct and hope that it is helpful. you see the word dimension tossed around all too freely when the concept of orthogonal is hard to imagine in terms of biology.
Having said that what do we have here. It is the application of the ability of the mathematics to keep independent, but finite inputs separate. All good but also arbitrary.
I do find that the conceptualization is helpful in understanding how our brain works and the use of virtual voids seriously addresses the possibility of accessing past experience however fuzzy.
This is exciting and important because it provides a theoretical framework to successfully hang our empirical understanding upon..
.
The human brain sees the world as an 11-dimensional multiverse
By Michael Blaustein
June 13, 2017 | 11:28am | Updated
http://nypost.com/2017/06/13/the-human-brain-sees-the-world-as-an-11-dimensional-multiverse/
New research suggests that the human brain is almost beyond comprehension because it doesn’t process the world in two dimensions or even three. No, the human brain understands the visual world in up to 11 different dimensions.
The astonishing discovery helps explain why even cutting-edge technologies like functional MRIs have such a hard time explaining what is going on inside our noggins. In a functional MRI, brain activity is monitored and represented as a three-dimensional image that changes over time. However, if the brain is actually working in 11 dimensions, looking at a 3D functional MRI and saying that it explains brain activity would be like looking at the shadow of a head of a pin and saying that it explains the entire universe, plus a multitude of other dimensions.
[ Oh good. i came to understand a long time ago that the whole problem of memory goes away if we simply use wormholes or some such thing to merely go back in time to access the information. The idea of a greater dimensionality allows us to do this by producing a larger theoretical framework, but i suspect it is unnecessary in terms of my cloud cosmology. - arclein ]
The team of scientists led by a group from Scientists at the École Polytechnique Fédérale de Lausanne in Switzerland detected the previously unknown complexities of the brain while working on the Blue Brain Project. The project’s goal is to create a biologically accurate recreation of the human brain.
During their research, the scientists created simulations of the brain and applied an advanced form of mathematics, called algebraic topology, to their computer-generated models.
“Algebraic topology is like a telescope and microscope at the same time. It can zoom into networks to find hidden structures — the trees in the forest — and see the empty spaces — the clearings — all at the same time,” said study author Kathryn Hess.
What Hess and her colleagues found was that the brain processes visual information by creating multi-dimensional neurological structures, called cliques, which disintegrate the instant they are understood, according to Newsweek who first reported on the research that was published in the journal Frontiers in Computational Neuroscience.
The cliques have up to 11 different dimensions and form in holes of space, called cavities. Once the brain understands the visual information, both the clique and cavity disappear.
[ i assume that understand means label - arclein ]
“The appearance of high-dimensional cavities when the brain is processing information means that the neurons in the network react to stimuli in an extremely organized manner,” said researcher Ran Levi.
[ we assume the concept of dimensionality is used here to indicate completely independent inputs which is a good plan. very good - arclein ]
“It is as if the brain reacts to a stimulus by building then razing a tower of multi-dimensional blocks, starting with rods (1D), then planks (2D), then cubes (3D), and then more complex geometries with 4D, 5D, etc. The progression of activity through the brain resembles a multi-dimensional sandcastle that materializes out of the sand and then disintegrates,” he said.
Henry Markram, director of Blue Brain Project, explained just how momentous a discovery the multi-dimensional structures could be.
“The mathematics usually applied to study networks cannot detect the high-dimensional structures and spaces that we now see clearly,” he said.
“We found a world that we had never imagined. There are tens of millions of these objects even in a small speck of the brain, up through seven dimensions. In some networks, we even found structures with up to 11 dimensions.”
Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function
- 1Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- 2Laboratory for Topology and Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- 3Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- 4DataShape, INRIA Saclay, Palaiseau, France
- 5Institute of Mathematics, University of Aberdeen, Aberdeen, United Kingdom
1. Introduction
How the structure of a network determines its function
is not well understood. For neural networks specifically, we lack a
unifying mathematical framework to unambiguously describe the emergent
behavior of the network in terms of its underlying structure (Bassett and Sporns, 2017). While graph theory has been used to analyze network topology with some success (Bullmore and Sporns, 2009), current methods are usually constrained to analyzing how local connectivity influences local activity (Pajevic and Plenz, 2012; Chambers and MacLean, 2016) or global network dynamics (Hu et al., 2014),
or how global network properties like connectivity and balance of
excitatory and inhibitory neurons influence network dynamics (Renart et al., 2010; Rosenbaum et al., 2017).
One such global network property is small-worldness. While it has been
shown that small-worldness optimizes information exchange (Latora and Marchiori, 2001), and that adaptive rewiring during chaotic activity leads to small world networks (Gong and Leeuwen, 2004),
the degree of small-worldness cannot describe most local network
properties, such as the different roles of individual neurons.
Algebraic topology (Munkres, 1984)
offers the unique advantage of providing methods to describe
quantitatively both local network properties and the global network
properties that emerge from local structure, thus unifying both levels.
More recently, algebraic topology has been applied to functional
networks between brain regions using fMRI (Petri et al., 2014) and between neurons using neural activity (Giusti et al., 2015),
but the underlying synaptic connections (structural network) were
unknown. Furthermore, all formal topological analyses have overlooked
the direction of information flow, since they analyzed only undirected
graphs.
We developed a mathematical framework to analyze both
the structural and the functional topology of the network, integrating
local and global descriptions, enabling us to establish a clear
relationship between them. We represent a network as a directed graph,
with neurons as the vertices and the synaptic connections directed from
pre- to postsynaptic neurons as the edges, which can be analyzed using
elementary tools from algebraic topology (Munkres, 1984).
The structural graph contains all synaptic connections, while a
functional graph is a sub-graph of the structural graph containing only
those connections that are active within a specific time bin (i.e., in
which a postsynaptic neuron fires within a short time of a presynaptic
spike). The response to a stimulus can then be represented and studied
as a time series of functional graphs.
Networks are often analyzed in terms of groups of nodes that are all-to-all connected, known as cliques. The number of neurons in a clique determines its size, or more formally, its dimension. In directed graphs it is natural to consider directed cliques, which are cliques containing a single source neuron and a single sink neuron and reflecting a specific motif of connectivity (Song et al., 2005; Perin et al., 2011),
wherein the flow of information through a group of neurons has an
unambiguous direction. The manner in which directed cliques bind
together can be represented geometrically. When directed cliques bind
appropriately by sharing neurons, and without forming a larger clique
due to missing connections, they form cavities (“holes,” “voids”)
in this geometric representation, with high-dimensional cavities
forming when high-dimensional (large) cliques bind together. Directed
cliques describe the flow of information in the network at the local
level, while cavities provide a global measure of information flow in
the whole network. Using these naturally arising structures, we
established a direct relationship between the structural graph and the
emergent flow of information in response to stimuli, as captured through
time series of functional graphs.
We applied this framework to digital reconstructions of
rat neocortical microcircuitry that closely resemble the biological
tissue in terms of the numbers, types, and densities of neurons and
their synaptic connectivity (a “microconnectome” model for a cortical
microcircuit, Figures 1A,B; see Markram et al., 2015; Reimann et al., 2015).
Simulations of the reconstructed microcircuitry reproduce multiple
emergent electrical behaviors found experimentally in the neocortex (Markram et al., 2015).
The microcircuit, formed by ~8 million connections (edges) between
~31,000 neurons (vertices), was reconstructed from experimental data,
guided by biological principles of organization, and iteratively refined
until validated against a battery of independent anatomical and
physiological data obtained from experiments. Multiple instantiations of
the reconstruction provide a statistical and biological range of
microcircuits for analysis.
FIGURE 1
Figure 1. (A) Thin (10 μm) slice of in silico reconstructed tissue. Red: A clique formed by five pyramidal cells in layer 5. (B1) Full connection matrix of a reconstructed microcircuit with 31,146 neurons. Neurons are sorted by cortical layer and morphological type within each layer. Pre-/postsynaptic neurons along the vertical/horizontal axis. Each grayscale pixel indicates the connections between two groups of 62 neurons each, ranging from white (no connections) to black (≥8% connected pairs). (B2) Zoom into the connectivity between two groups of 434 neurons each in layer 5, i.e., 7 by 7 pixels in (A), followed by a further zoom into the clique of 5 neurons shown in (A). Black indicates presence, and white absence of a connection. (B3) Zoom into the somata of the clique in (A) and representation of their connectivity as a directed graph.
We found a remarkably high number
and variety of high-dimensional directed cliques and cavities, which
had not been seen before in neural networks, either biological or
artificial, and in far greater numbers than those found in various null
models of directed networks. Topological metrics reflecting the number
of directed cliques and cavities not only distinguished the
reconstructions from all null models, they also revealed subtle
differences between reconstructions based on biological datasets from
different animals, suggesting that individual variations in biological
detail of neocortical microcircuits are reflected in the repertoire of
directed cliques and cavities. When we simulated microcircuit activity
in response to sensory stimuli, we observed that pairwise correlations
in neuronal activity increased with the number and dimension of the
directed cliques to which a pair of neurons belongs, indicating that the
hierarchical structure of the network shapes a hierarchy of correlated
activity. In fact, we found a hierarchy of correlated activity between
neurons even within a single directed clique. During activity, many more
high-dimensional directed cliques formed than would be expected from
the number of active connections, further suggesting that correlated
activity tends to bind neurons into high-dimensional active cliques.
Following a spatio-temporal stimulus to the network, we
found that during correlated activity, active cliques form increasingly
high-dimensional cavities (i.e., cavities formed by increasingly larger
cliques). Moreover, we discovered that while different spatio-temporal
stimuli applied to the same circuit and the same stimulus applied to
different circuits produced different activity patterns, they all
exhibited the same general evolution, where functional relationships
among increasingly higher-dimensional cliques form and then
disintegrate.
2. Results
2.1. The Case for Directed Simplices
Networks of neurons connected by electrical synapses
(gap junctions) can be represented as undirected graphs, where
information can flow in both directions. Networks with chemical
synapses, which impose a single direction of synaptic communication from
the pre- to the postsynaptic neuron (Figures 1B2,B3),
are more accurately represented as directed graphs. Sub-sampling
networks of neurons experimentally has revealed small motifs of synaptic
connectivity, but not large cliques of neurons (Song et al., 2005; Perin et al., 2011).
Knowing the complete directed network of neurons, as we do in the case
of the reconstructed microcircuit, enables us to detect all cliques,
directed, and otherwise (Figure 1).
When the direction of connections is not taken into
account, a great deal of information is lost. For example, in the
undirected case, there is only one possible configuration for a clique
of four fully connected neurons (Figure 2A1, left). However, in the directed case, there are 36
= 729 possible configurations, as each of the six connections can be in
one of three states (i → j, j ← i, or i ↔ j connection types; Figure 2A1 right).
FIGURE 2
Figure 2. (A1) A 4-clique in the undirected connectivity graph has one of 729 configurations in the directed graph. (A2) Configurations containing bidirectional connections are resolved by considering all sub-graphs without bidirectional connections. (A3) Without bidirectional connections, 64 possible configurations remain, 24 of which are acyclic, with a clear sink-source structure (directed simplices, in this case of dimension 3). (B) Number of simplices in each dimension in the Bio-M reconstruction (shaded area: standard deviation of seven statistical instantiations) and in three types of random control networks. (C) Examples of neurons forming high-dimensional simplices in the reconstruction. Bottom: Their representation as directed graphs. (D) (Left) Number of directed simplices of various dimensions found in 55 in vitro patch-clamp experiments sampling groups of pyramidal cells in layer 5. (Right) Number of simplices of various dimensions found in 100,000 in silico experiments mimicking the patch-clamp procedure of (B).
A clique with reciprocal connections contains two or more cliques consisting only of uni-directional connections (Figure 2A2). When only uni-directional connections are considered, there are 26
possible configurations of four fully connected neurons, which are of
two types: those that contain cycles (40 configurations; Figure 2A3 left; Section 4.1.3) and those that do not (24 configurations; Figure 2A3 right). Directed cliques are exactly the acyclic cliques. The net directionality
of information flow through any motif can be defined as the sum over
all neurons of the squares of the differences between their in-degree
and their out-degree (see Equation 2, Figure S1). Directed cliques have
the highest net directionality among all cliques (Figure S1; Section
4.1.4). A clique that contains cycles always decomposes into directed
cliques with the same number of neurons or fewer, at the very least any
single connection between two neurons forms a 2-clique. A cyclical
clique of three neurons therefore decomposes into three 2-cliques.
Following the conventions in algebraic topology, we refer to directed
cliques of n neurons as directed simplices of dimension n-1 or directed (n-1)-simplices (which reflects their natural geometric representation as (n-1)-dimensional polyhedra) (see Figure S2; Section 4.1.3). Correspondingly, their sub-cliques are called sub-simplices.
2.2. An Abundance of Directed Simplices
2.2.1. Reconstructed Neocortical Microcircuitry
We analyzed 42 variants of the reconstructed
microconnectome, grouped into six sets, each comprised of seven
statistically varying instantiations (Markram et al., 2015;
Section 4.3). The first five sets were based on specific heights of the
six layers of the neocortex, cell densities, and distributions of
different cell types experimentally measured in five different rats
(Bio1-5), while the sixth represents the mean of these measurements
(Bio-M). Individual instantiations within a set varied with the outcome
of the stochastic portions of the reconstruction process. Surprisingly,
we found that the reconstructions consistently contained directed
simplices of dimensions up to 6 or 7, with as many as 80 million
directed 3-simplices (Figure 2B;
blue). This is the first indication of the existence of such a vast
number of high-dimensional directed simplices in neocortical
microcircuitry, or in any neural network.
2.2.2. Control Models
To compare these results with null models, we examined
how the numbers of directed simplices in these reconstructions differed
from those of artificial circuits and from circuits in which some of the
biological rules of connectivity were omitted (see Section 4.4). For
one control, we generated five Erdős-Rényi random graphs (ER) of equal
size (~31,000 vertices) and the same average connection probability as
the Bio-M circuit (~0.8%; ~8 million edges) (Figure 2B;
dark green). For another, we constructed a circuit with the same 3D
model neurons as the Bio-M circuit, but connected the neurons using a
random connectivity rule [“Peters' Rule” (Peters and Feldman, 1976), PR; Figure 2B,
red]. For the last control we connected the neurons in the Bio-M
circuit according to the distance-dependent connection probabilities
between the different morphological types of neurons. Since this control
is similar to deriving connectivity from the average overlap of
neuronal arbors (Shepherd et al., 2005), it retains the general biological (GB) features of connectivity between different types of neurons (Reimann et al., 2015), excluding only explicit pairwise connectivity between individual neurons, which is determined by the overlap of their specific arbors (Figure 2B,
yellow). In all cases, the number of directed simplices of dimensions
larger than 1 was far smaller than in the Bio-M circuit. In addition,
the relative differences between the Bio-M and the null models increased
markedly with dimension.
2.2.3. In vitro
Simplices of high dimensions (such as those depicted in Figure 2C)
have not yet been observed experimentally, as doing so would require
simultaneous intracellular recording of large numbers of neurons. To
obtain an indication of the presence of many high-dimensional directed
simplices in the actual neocortical tissue, we performed multi-neuron
patch-clamp experiments with up to 12 neurons at a time in in vitro
slices of the neocortex of the same age and brain region as the
digitally reconstructed tissue (Section 4.5.1). Although limited by the
number of neurons we could simultaneously record from, we found a
substantial number of directed simplices up to dimension 3, and even one
4-dimensional simplex, in just 55 multi-neuron recording experiments
(Figure 2D,
left). We then mimicked these experiments on the reconstructed
microcircuit by repeating the same multi-neuron patch-clamp recordings in silico
(Section 4.5.2) and found a similar shape of the distribution of 4-,
3-, and 2-simplices, though in lower frequencies than in the actual
tissue (Figure 2D,
right). These findings not only confirm that high-dimensional directed
simplices are prevalent in the neocortical tissue, they also suggest
that the degree of organization in the neocortex is even greater than
that in the reconstruction, which is already highly significant (see
Section 3).
2.2.4. C. elegans
To test whether the presence of large numbers of
high-dimensional directed simplices is a general phenomenon of neural
networks rather than a specific phenomenon found in this part of the
brain of this particular animal and at this particular age, we computed
the numbers of directed simplices in the C. elegans connectome (Varshney et al., 2011)
(Section 4.6). Again, we found many more high-dimensional simplices
than expected from a random circuit with the same number of neurons
(Figure S3).
2.2.5. Simplicial Architecture of Neocortical Microcircuitry
To understand the simplicial architecture of the
microcircuit, we began by analyzing the sub-graphs formed only by
excitatory neurons, only by inhibitory neurons, and only in individual
layers by both excitatory and inhibitory neurons. Restricting to only
excitatory neurons barely reduces the number of simplices in each
dimension (Figure 3A1), while simplex counts in inhibitory sub-graphs are multiple orders of magnitude smaller (Figure 3A2),
consistent with the fact that most neurons in the microcircuitry are
excitatory. Analyzing the sub-graphs of the layers in isolation shows
that layers 5 and 6, where most of the excitatory neurons reside (Markram et al., 2015), contain the most simplices and the largest number of high-dimensional simplices (Figure 3A3).
FIGURE 3
Figure 3. (A1) Number of simplices in each dimension in the excitatory subgraph (shaded area: standard deviation across seven instantiations). (A2) Same, for the inhibitory subgraph. (A3) Same, for the subgraphs of individual layers. (B) Distribution across seven instantiations of the Bio-M graph of the number of 3- simplices an excitatory (red) or inhibitory (blue) neuron belongs to (simplices/neuron). (C) Mean over neurons in individual layers of the highest dimension of a simplex that they belong to. (D) Simplices/neuron by layer and dimension. (E) Correlation of 3-simplices/neuron and degree in the graph for all neurons.
The large number of simplices
relative to the number of neurons in the microcircuit implies that each
neuron belongs to many directed simplices. Indeed, when we counted the
number of simplices to which each neuron belongs across dimensions, we
observed a long-tailed distribution such that a neuron belongs on
average to thousands of simplices (Figure 3B).
Both the mean maximal dimension and the number of simplices a neuron
belongs to are highest in the deeper cortical layers (Figure 3C). Neurons in layer 5 belong to the largest number of simplices, many spanning multiple layers (Figure 3D),
consistent with the abundance of neurons with the largest morphologies,
which are connected to all layers. On the other hand, layer 6 has the
largest number of simplices that are fully contained in the layer
(Figure 3A3),
consistent with the fact that layer 6 contains the most neurons. While
the number of simplices that can form in the microcircuitry depends
essentially on the number of neurons, the number of simplices to which a
single neuron belongs depends fundamentally on its number of incoming
and outgoing connections (its degree), which in turn depends on its morphological size (Figure 3E).
2.3. Topology Organizes Spike Correlations
The presence of vast numbers of directed cliques across a
range of dimensions in the neocortex, far more than in null models,
demonstrates that connectivity between these neurons is highly organized
into fundamental building blocks of increasing complexity. Since the
structural topology of the neural network takes into account the
direction of information flow, we hypothesized that emergent electrical
activity of the microcircuitry mirrors its hierarchical structural
organization. To test this hypothesis, we simulated the electrical
activity of the microcircuit under in vivo-like conditions (Markram et al., 2015).
Stimuli, configured as nine different spatio-temporal input patterns (Figure 4A),
were injected into the reconstructed microcircuit through virtual
thalamo-cortical fibers in which spike trains were induced using
patterns recorded in vivo (Bale et al., 2015;
Figure S4; Section 4.7). These stimuli differed primarily in the degree
of synchronous input received by the neurons. As expected, the neurons
in the microcircuit responded to the inputs with various spiking
patterns (Figures 4B1,B2,B4). We then calculated for each connected pair of neurons the correlation of their spiking activity (Figure 4C)
and found a broad distribution of correlation coefficients, with only
~12% of connections where either the pre- or postsynaptic neuron failed
to respond during all stimuli.
FIGURE 4
Figure 4. (A) Patterns of thalamic innervation in the reconstruction. Each circle represents the center of innervation of a thalamic fiber. Each color represents a unique thalamic spike train assigned to that fiber. (B1) Exemplary directed simplex in a microcircuit. (B2) Connectivity and morphological types of neurons in the exemplary simplex. (B3) Raster plot and PSTH (Δt = 10 ms) of spiking response of neurons in (B1,B2) to stimulus S30b. (B4) Correlation coefficients of all pairs of PSTHs in (B3). (C) Correlation coefficients of PSTHs for all stimuli and all connected pairs of neurons in a microcircuit (Δt = 25 ms). (D) Mean correlation coefficients for connected pairs of neurons against the number of maximal simplices the edge between them belongs to, dimension by dimension. Means of fewer than 1,000 samples omitted. (E) Mean correlation coefficient of pairs of neurons, given their position within a simplex and its dimension.
To avoid redundant sampling when testing the relationship between simplex dimension and activity, we restricted our analysis to maximal simplices,
i.e., directed simplices that are not part of any higher-dimensional
simplex (Section 4.1.2). A connection can be part of many
higher-dimensional maximal simplices, unless it is itself a maximal
1-simplex. Despite the restriction to maximal simplices, we retained all
information about the structure of the microcircuit because the
complete structure is fully determined by its list of maximal simplices
(Section 4.1.2). Correlations were calculated from histograms of the
average spiking response (peri-stimulus time histogram, PSTH; bin size,
25 ms) to five seconds of thalamo-cortical input over 30 repetitions of a
given input pattern (Figure 4B3). We then calculated the normalized cross-covariance of the histograms for all connections (Figure 4C; Section 4.8) and compared it to the number of maximal simplices associated with each connection in each dimension (see Figure 4D).
The neurons forming maximal 1-simplices displayed a significantly lower spiking correlation than the mean (Figure 4D),
an indication of the fragility and lack of integration of the
connection into the network. The mean correlation initially decreased
with the number of maximal 2-simplices a connection belongs to, and then
increased slightly. We observed that the greater the number of maximal
2-simplices a connection belongs to, the less likely it is to belong to
higher-dimensional maximal simplices, with the minimum correlation
occurring when the connection belongs to no simplices of dimension
higher than 3. In higher dimensions, the correlation increased with the
number of maximal simplices to which a connection belongs. While very
high mean correlation can be attained for connections belonging to many
maximal 3- or 4-simplices, the mean correlation of connections belonging
to just one maximal 5- or 6-simplex was already considerably greater
than the mean. These findings reveal a strong relationship between the
structure of the network and its emergent activity and specifically that
spike correlations depend on the level of participation of connections
in high-dimensional simplices.
To determine the full extent to which the topological
structure could organize activity of neurons, we examined spike
correlations between pairs of neurons within individual simplices. These
correlations increased with simplex dimension (Figure 4E,
blue), again demonstrating that the degree of organization in the
activity increases with structural organization. Spike correlation
between pairs of neurons is normally an ambiguous measurement of
connection strength because it is influenced by the local structure,
specifically by indirect connections and/or shared inputs (Palm et al., 1988; Brody, 1999).
However, since in our case the local structure is known and described
in terms of directed simplices, we could infer how the local structural
organization influences spike correlations. We compared the impact of
indirect connections and of shared inputs on correlated activity by
calculating the average correlation of pairs of neurons at different
positions in a simplex when ordered from source to sink (Figure 4E,
right panel). The number of indirect connections is highest for the
pair consisting of the first (source) and last (sink) neurons (Figure 4E, purple), while the number of shared inputs is highest for the last and second-to-last neurons (Figure 4E, red). The first (source) and second neurons (Figure 4E,
green) serve as a control because they have the smallest numbers of
both indirect connections and shared inputs in the simplex.
We found that correlations were significantly higher for
the last two neurons in the simplex, suggesting that shared input
generates more of the pairwise correlation in spiking than indirect
connections in directed simplices (p < 8 · 10−6,
all dimensions except 1D). Moreover, the spiking correlation of the
source and sink neurons was similar to the correlation of the first and
second neurons (Figure 4E,
purple and green), further suggesting that spike correlations tend to
increase as shared input increases. These results hold for a range of
histogram time bin sizes (Figure S5). The specific positions of neurons
in local structures such as directed simplices therefore shape the
emergence of correlated activity in response to stimuli.
2.4. Cliques of Neurons Bound into Cavities
Simplices are the mathematical building blocks of the
microcircuitry. To gain insight into how its global structure shapes
activity, it is necessary to consider how simplices are bound together.
This can be achieved by analyzing the directed flag complex,
which is the set of all directed simplices together with the set of all
sub-simplices for each simplex (Figure S6, Section 4.1.2). The directed
flag complex is a complete representation of the graph, including in
particular the cycles neglected when examining directed simplices in
isolation. The relationship between any two directed simplices depends
on how they share sub-simplices. Just as any simplex can be realized as a
polyhedron, a directed flag complex can be realized as a geometric
object, built out of these polyhedra. If two simplices share a
sub-simplex, the corresponding polyhedra are glued together along a
common face (Figure 5A). The “shape” (or, more precisely, the topology) of this geometric object fully describes the global structure of the network.
FIGURE 5
Figure 5. (A) Example of the calculation of the Euler characteristic of a directed flag complex as an alternating sum of Betti numbers or simplex counts. (B) Euler characteristic against the highest non-zero Betti number (β5) for seven instances of reconstructed microcircuits based on five different biological datasets (Bio 1-5). (C) Top: The transmission-response (TR) graph of the activity of a microcircuit is a subgraph of its structural connectivity containing all nodes, but only a subset of the edges (connections). Bottom: An edge is contained if its presynaptic neuron spikes in a defined time bin and its postsynaptic neurons spikes within 10 ms of the presynaptic spike. (D) Fraction of edges active against fraction of high-dimensional simplices active in TR graphs for various time bins of a simulation. Error bars indicate the standard deviation over 10 repetitions of the simulation. Blue triangles: 4-dimensional simplices, blue squares: 5-dimensional simplices. Red symbols and dashed lines indicate the results for choosing edges randomly from the structural graph and the number expected for random choice, respectively.
To analyze directed flag complexes we computed two descriptors, the Euler characteristic and Betti numbers
(Section 4.1.5). The Euler characteristic of a flag complex is given by
the alternating sum of the number of simplices in each dimension, from
zero through the highest dimension (Figure 5A). The Betti numbers together provide an indication of the number of cavities (or more precisely, homology classes)
fully enclosed by directed simplices in the geometric object realizing
the directed flag complex, where the dimension of a cavity is determined
by the dimension of the enclosing simplices. The n-th Betti number, denoted βn, indicates the number of n-dimensional cavities. For example, in Figure 5A, there is one 2-dimensional cavity (and therefore β2
= 1) enclosed by the eight triangles; if an edge were added between any
two non-connected nodes, then the geometric object realizing the
corresponding flag complex would be filled in with solid tetrahedra, and
the cavity would disappear. In the flag complexes of the
reconstructions, it was not possible to compute more than the zeroth and
top nonzero Betti numbers, as lower dimensions were computationally too
expensive (Section 4.2.2). We could easily compute all Betti numbers
for the C. elegans connectome, however, as it has many fewer nodes and edges (Figure S3).
The Betti number computations showed that there are
cavities of dimension 5 (cavities completely enclosed by
5-simplices/6-neuron directed cliques) in all seven instances of each of
the reconstructions (Bio1-Bio5, Figure 5B;
Bio-M not shown). In contrast, the ER- and PR-control models have no
cavities of dimension higher than 3, and the GB-model has no cavities of
dimension higher than 4, demonstrating that there are not only
non-random building blocks in the reconstruction, but also non-random
relationships among them. We found as well that the information encoded
in β5 and the Euler characteristic together captures enough
of the structure of the flag complex of a reconstruction to reveal
subtle differences in their connectivity arising from the underlying
biological data (Figure 5B, different colors).
2.5. Cliques and Cavities in Active Sub-Graphs
Thus far we have shown that the structural network
guides the emergence of correlated activity. To determine whether this
correlated activity is sufficiently organized to bind neurons together
to form active cliques and to bind cliques together to form active
cavities out of the structural graph, we represented the spiking
activity during a simulation as a time series of sub-graphs for which we
computed the corresponding directed flag complexes. Each sub-graph in
this series comprises the same nodes (neurons) as the reconstruction,
but only a subset of the edges (synaptic connections), which are
considered active, i.e., the presynaptic neuron spikes in a time bin of size Δt1 and the postsynaptic neuron spikes within a time Δt2 after the presynaptic spike (Figure 5C and Figure S7, Section 4.9). By considering subsequent, non-overlapping time bins of constant size Δt1, we obtain a time series of transmission-response
(TR) graphs reflecting correlated activity in the microcircuitry. We
converted the time series of TR graphs in response to the different
patterns of thalamo-cortical inputs (see Figure 4A) into time series of directed flag complexes. We found significantly more simplices in the TR graphs (Δt1 = 5 ms, Δt2 = 10 ms) than would be expected based on the number of edges alone (Figure 5D), indicating that correlated activity becomes preferentially concentrated in directed simplices.
The nine stimuli generated different spatio-temporal responses and different numbers of active edges (Figure 6A).
The variation in Betti numbers and Euler characteristic over time
indicates that neurons become bound into cliques and cavities by
correlated activity (Figure 6A and Figure S8). When we plotted the number of cavities of dimension 1 (β1) against the number of those of dimension 3 (β3) (the highest dimension in which cavities consistently occur), the trajectory over the course of ~100 ms (Figure 6B)
began ~50 ms after stimulus onset with the formation of a large number
of 1-dimensional cavities, followed by the emergence of 2-dimensional
(not shown) and 3-dimensional cavities. The decrease in β1 began while β3 was still increasing and continued until β3
reached its peak, indicating that higher-dimensional relationships
between directed simplices continued to be formed by correlated activity
as the lower dimensional relationships subside.
FIGURE 6
Figure 6. (A) Number of edges, β1, β3, and Euler characteristic of the time series of TR graphs in response to the stimulus patterns shown in Figure 4 (mean and SEM of 30 repetitions of each stimulus). (B) Trace of the time series of β1 against β3 for three of the stimuli. Shading of colors indicates Gaussian profiles at each time step with means and standard deviations interpolated from 30 repetitions of each stimulus. (C) Trace for one of the stimuli in B, along with the mean firing activity at different locations of the microcircuit during time steps of 2 ms. (D) Like (B), but for TR graphs of Bio 1-5, in response to stimulus S15b.
Different stimuli led to Betti
number trajectories of different amplitudes, where higher degrees of
synchrony in the thalamic input produced higher amplitudes. The
trajectories all followed a similar progression of cavity formation
toward a peak level of functional organization followed by relatively
rapid disintegration. The center of the projection of each trajectory
onto the β1-axis (its β1-center) was approximately
the same. Together, these characteristics of the trajectories reveal a
stereotypical evolution of cliques and cavities in response to stimuli.
These observations are consistent with experimentally recorded in vivo responses to sensory stimuli in terms of onset delay, response duration, and the presence of distinct phases of the response (Luczak et al., 2015).
To determine the neurons involved in this robust
evolution of functional organization, we recorded the mean levels of
spiking activity at different spatial locations within the microcircuit
for one exemplary stimulus (Figure 6C). The activity started at depths that correspond to the locations of the thalamo-cortical input (Meyer et al., 2010; Markram et al., 2015),
increasing in layer 4 and at the top of layer 6, before propagating
downwards, reaching the top of layer 5 and the center of layer 6 as β1 peaks, consistent with the finding that most directed simplices are in these layers. The transition from increasing β1 to increasing β3
coincided with the spread of the upper activity zone deeper into layer 5
and the top of layer 6, consistent with the presence of the highest
dimensional directed simplices in these layers. The bottom activity zone
also continued moving deeper, until it eventually subsided. As the top
activity zone reached the bottom of layer 5, β3 attained its peak. The zones of activity at the peaks of β1 and β3 are highly complementary: zones active at the peak of β1 were generally inactive at the peak of β3 and vice versa. The activity zone then remained in layer 5 until the cavities collapsed.
Finally, we applied the same stimulus to the reconstructions based on variations in the underlying biological data (see Figure 5B,
Bio-1 to 5) and found similar Betti number trajectories, indicating
that the general sequence of cavity formation toward peak functional
organization followed by disintegration is preserved across individuals.
On the other hand, we observed markedly different amplitudes,
indicating that biological variability leads to variation in the number
of high-dimensional cavities formed by correlated activity (Figure 6D). We also found that, unlike the case of different stimuli applied to the same microcircuit (Figure 6B), trajectories arising from different biological variations have different β1-centers.
In some cases, we observed reverberant trajectories that also followed a
similar sequence of cavity formation, though smaller in amplitude. The
general sequence of cavity formation and disintegration, however,
appears to be stereotypic across stimuli and individuals.
3. Discussion
This study provides a simple, powerful, parameter-free,
and unambiguous mathematical framework for relating the activity of a
neural network to its underlying structure, both locally (in terms of
simplices) and globally (in terms of cavities formed by these
simplices). Using this framework revealed an intricate topology of
synaptic connectivity containing an abundance of cliques of neurons and
of cavities binding the cliques together. The study also provides novel
insight into how correlated activity emerges in the network and how the
network responds to stimuli.
Such a vast number and variety of directed cliques and
cavities had not been observed before in any neural network. The numbers
of high-dimensional cliques and cavities found in the reconstruction
are also far higher than in null models, even in those closely
resembling the biology-based reconstructed microcircuit, but with some
of the biological constraints released. We verified the existence of
high-dimensional directed simplices in actual neocortical tissue. We
further found similar structures in a nervous system as phylogenetically
different as that of the worm C. elegans (Varshney et al., 2011), suggesting that the presence of high-dimensional topological structures is a general phenomenon across nervous systems.
We showed that the spike correlation of a pair of
neurons strongly increases with the number and dimension of the cliques
they belong to and that it even depends on their specific position in a
directed clique. In particular, spike correlation increases with
proximity of the pair of neurons to the sink of a directed clique, as
the degree of shared input increases. These observations indicate that
the emergence of correlated activity mirrors the topological complexity
of the network. While previous studies have found a similar link for
motifs built from 2-dimensional simplices (Pajevic and Plenz, 2012; Chambers and MacLean, 2016),
we generalize this to higher dimensions. The fact that each neuron
belongs to many directed cliques of various dimensions explains in vivo observations that neurons can “flexibly join multiple ensembles” (Miller et al., 2014). Braids of directed simplices connected along their appropriate faces could possibly act as synfire chains (Abeles, 1982), with a superposition of chains (Bienenstock, 1995) supported by the high number of cliques each neuron belongs to.
Topological metrics reflecting relationships among the
cliques revealed biological differences in the connectivity of
reconstructed microcircuits. The same topological metrics applied to
time-series of transmission-response sub-graphs revealed a sequence of
cavity formation and disintegration in response to stimuli, consistent
across different stimuli and individual microcircuits. The size of the
trajectory was determined by the degree of synchronous input and the
biological parameters of the microcircuit, while its location depended
mainly on the biological parameters. Neuronal activity is therefore
organized not only within and by directed cliques, but also by highly
structured relationships between directed cliques, consistent with a
recent hypothesis concerning the relationship between structure and
function (Luczak et al., 2015).
The higher degree of topological complexity of the
reconstruction compared to any of the null models was found to depend on
the morphological detail of neurons, suggesting that the local
statistics of branching of the dendrites and axons is a crucial factor
in forming directed cliques and cavities, though the exact mechanism by
which this occurs remains to be determined (but see Stepanyants and Chklovskii, 2005). The number of directed 2-, 3-, and 4-simplices found per 12-patch in vitro
recording was higher than in the digital reconstruction, suggesting
that the level of structural organization we found is a conservative
estimate of the actual complexity. Since the reconstructions are
stochastic instantiations at a specific age of the neocortex, they do
not take into account rewiring driven by plasticity during development
and learning. Rewiring is readily triggered by stimuli as well as
spontaneous activity (Le Be and Markram, 2006), which leads to a higher degree of organization (Chklovskii et al., 2004; Holtmaat and Svoboda, 2009)
that is likely to increase the number of cliques. The difference may
also partly be due to incomplete axonal reconstructions that would lead
to lower connectivity, but such an effect would be minor because the
connection rate between the specific neurons recorded for this
comparison is reasonably well constrained (Reimann et al., 2015).
The digital reconstruction does not take into account
intracortical connections beyond the microcircuit. The increase in
correlations between neurons with the number of cliques to which they
belong should be unaffected when these connections are taken into
account because the overall correlation between neurons saturates
already for a microcircuit of the size considered in this study, as we
have previously shown (Markram et al., 2015).
However, the time course of responses to stimuli and hence the specific
shape of trajectories may be affected by the neighboring tissue.
In conclusion, this study suggests that neocortical
microcircuits process information through a stereotypical progression of
clique and cavity formation and disintegration, consistent with a
recent hypothesis of common strategies for information processing across
the neocortex (Harris and Shepherd, 2015).
We conjecture that a stimulus may be processed by binding neurons into
cliques of increasingly higher dimension, as a specific class of cell
assemblies, possibly to represent features of the stimulus (Hebb, 1949; Braitenberg, 1978), and by binding these cliques into cavities of increasing complexity, possibly to represent the associations between the features (Willshaw et al., 1969; Engel and Singer, 2001; Knoblauch et al., 2009).
4. Materials and Methods
4.1. The Topological Toolbox
Specializing basic concepts of algebraic topology, we have formulated precise definitions of cliques (simplices) and cavities (as counted by Betti numbers)
associated to directed networks. What follows is a short introduction
to directed graphs, simplicial complexes associated to directed graphs,
and homology, as well as to the notion of directionality in directed
graphs used in this study. We define, among others, the following terms
and concepts.
4.1.1. Directed Graphs
A directed graph G
, and the function τ associates with each edge an ordered pair of vertices. The direction of an edge e with τ(e) = (v1, v2) is taken to be from τ1(e) = v1, the source vertex, to τ2(v) = v2, the target vertex. The function τ is required to satisfy the following two conditions.
1. There are no (self-) loops in the graph (i.e., for each e ∈ E, if τ(e) = (v1, v2), then v1 ≠ v2).
2. For any pair of vertices (v1, v2), there is at most one edge directed from v1 to v2 (i.e., the function τ is injective).
Notice that a directed graph may contain pairs of vertices that are reciprocally connected, i.e., there may exist edges e, e′ ∈ E such that τ(e) = (v1, v2) and τ(e′)=(v2,v1)
(Figure S6A1ii).
A vertex v∈G
is said to be a sink if there exists no e ∈ E such that v = τ1(e), but there is at least one edge e′ ∈ E such that
consists of a sequence of edges (e1, …, en) such that for all 1 ≤ k < n, the target of ek is the source of ek+1, i.e., τ2(ek) = τ1(ek+1) (Figure S6A1iii). The length of the path (e1, …, en) is n. If, in addition, the target of en is the source of e1, i.e., τ2(en) = τ1(e1), then (e1, …, en) is an oriented cycle. A graph that contains no oriented cycles is said to be acyclic (Figure S6A1i).
A directed graph is said to be fully connected if for every pair of distinct vertices, there exists an edge from one to the other, in at least one direction.
4.1.2. Simplices, Simplicial Complexes, and Flag Complexes
An abstract directed simplicial complex is a collection S
of finite, ordered sets with the property that if
are not assumed to be ordered. To be able to study directed graphs, we
use this slightly more subtle concept. Henceforth, we always refer to
abstract directed simplicial complexes as simplicial complexes.
The elements σ of a simplicial complex S
are called its simplices. We define the dimension of σ (denoted dim(σ)) to be the cardinality of the set σ minus one. If σ is a simplex of dimension n, then we refer to σ as an n-simplex of
then, for each 0 ≤ i ≤ n, the ith face of σ is the (n − 1)-simplex σi obtained from σ by removing the vertex vn−i. A simplex that is not a face of any other simplex is said to be maximal.
The set of all maximal simplices of a simplicial complex determines the
entire simplicial complex, since every simplex is either maximal itself
or a face of a maximal simplex.
A simplicial complex gives rise to a topological space by geometric realization.
A 0-simplex is realized by a single point, a 1-simplex by a line
segment, a 2-simplex by a (filled in) triangle, and so on for higher
dimensions. (see Munkres, 1984,
Section 1). To form the geometric realization of the simplicial
complex, one then glues the geometrically realized simplices together
along common faces. The intersection of two simplices in S
,
neither of which is a face of the other, is a proper subset, and hence a
face, of both of them. In the geometric realization this means that the
geometric simplices that realize the abstract simplices intersect on
common faces, and hence give rise to a well-defined geometric object.
If S
is a simplicial complex, then the union
. Coskeleta are important for computing homology (see Section 4.2.2).
4.1.3. Simplicial Complexes of Directed Graphs
Directed graphs give rise to directed simplicial
complexes in a natural way. The directed simplicial complex associated
to a directed graph G
is called the directed flag complex of
directed from vi to vj. The vertex v0 is called the source of the simplex (v0, …, vn), as there is an edge directed from v0 to vi for all 0 < i ≤ n. Conversely, the vertex vn is called the sink of the simplex (v0, …, vn), as there is an edge directed from vi to vn for all 0 ≤ i < n.
Notice that because of the assumptions on τ, an n-simplex in S
is characterized by the (ordered) sequence (v0, …, vn), but not by the underlying set of vertices. For instance (v1, v2, v3) and (v2, v1, v3) are distinct 2-simplices with the same set of vertices.
4.1.4. Directionality of Directed Graphs
We give a mathematical definition of the notion of
directionality in directed graphs, and prove that directed simplices are
fully connected directed graphs with maximal directionality. Let G=(V,E,τ)
be a directed graph. For each vertex
, define the signed degree of v to be
Note that for any finite graph G
,
, to be the sum over all vertices of the square of their signed degrees (Figure S1),
Let Gn
denote a directed n-simplex, i.e., a fully connected directed graph on n + 1 vertices such that every complete subgraph has a unique source and a unique sink. Note that a directed n-simplex has no reciprocal connections. If
as a directed graph. A full proof of these statements is given in the Supplementary Methods.
4.1.5. Homology
Betti numbers and Euler characteristic are
numerical quantities associated to simplicial complexes that arise from
an important and very useful algebraic object one can associate with any
simplicial complex, called homology. Homology serves to measure
the “topological complexity” of simplicial complexes, leading us to
refer to Betti numbers and Euler characteristic as topological metrics. In this study we use only mod 2 simplicial homology, computationally the simplest variant of homology, which is why it is very commonly used in applications (Bauer et al., 2017). What follows is an elementary description of homology and its basic properties.
4.1.5.1. Betti numbers
Let 𝔽2 denote the field of two elements. Let S
be a simplicial complex. Define the chain complex
.
For each n ≥ 1, there is a linear transformation called a differential
specified by ∂n(σ)=σ0+σ1+⋯+σn
for every n-simplex σ, where σi is the i-th face of σ, as defined above. Having defined ∂n on the basis, one then extends it linearly to the entire vector space Cn. The n-th Betti number
is the 𝔽2-vector space dimension of its n-th mod 2 homology group, which is defined by
for n ≥ 1 and
For all n ≥ 1, there is an inclusion of vector subspaces Im(∂n + 1) ⊆ Ker(∂n) ⊆ Cn, and thus the definition of homology makes sense.
Computing the Betti numbers of a simplicial complex is conceptually very easy. Let |Sn|
denote the number of n-simplices in the simplicial complex
are then a sequence of natural numbers defined by
Since Im(∂n + 1) ⊆ Ker(∂n) for all n ≥ 1, the Betti numbers are always non-negative. The n-th Betti number βn gives an indication of the number of “n-dimensional cavities” in the geometric realization of S
.
4.1.5.2. Euler characteristic
If S
is a simplicial complex, and
is defined to be
There is a well-known, close relationship between Euler characterstic and Betti numbers (Munkres, 1984, Theorem 22.2), which is expressed as follows. If {βn(S)}n≥0
is the sequence of Betti numbers for
, then
4.2. Computation of Simplices and Homology
4.2.1. Generating Directed Flag Complexes with Hasse Diagrams
To obtain the simplices, Betti numbers and Euler
characteristic of a directed graph, we first generate the directed flag
complex associated to the graph. Our algorithm encodes a directed graph
and its flag complex as a Hasse diagram. The Hasse diagram then
gives immediate access to all simplices and simplex counts. The
algorithm to generate the Hasse diagrams is fully described in the
Supplementary Methods Section 2.2, and the C++ implementation of the
code is publicly available at http://neurotop.gforge.inria.fr/.
4.2.2. Homology Computations
Betti numbers and Euler characteristic are computed from
the directed flag complexes. All homology computations carried out for
this paper were made with 𝔽2 coefficients, using the boundary matrix reduced by an algorithm from the PHAT library (Bauer et al., 2017).
The complexity of computing the n-th Betti numbers scales with the number of simplices in dimensions n − 1, n, and n + 1. In particular, it requires the computation of rank and nullity of matrices with shapes (n − 1) × n and n × (n
+ 1). Due to the millions of simplices in dimensions 2 and 3 in the
reconstructed microcircuits (see Results), the calculation of Betti
numbers above 0 or below 5 was computationally not viable, while the
computation of the 5th Betti number was possible using the 5-coskeleton
for each of the complexes. Nevertheless, our Euler characteristic
computations imply that at least one of β2 or β4 must be nonzero, and it is highly likely the βk is nonzero for all k ≤ 5.
4.3. Model of Neocortical Microcircuitry
Analyses of connectivity and simulations of electrical
activity are based on a previously published model of neocortical
microcircuitry and related methods (Markram et al., 2015).
We analyzed microcircuits that were reconstructed with layer height and
cell density data from five different animals (Bio-1-5), with seven
microcircuits per animal forming a mesocircuit (35 microcircuits in
total). In addition, we analyzed microcircuits that were reconstructed
using average data (Bio-M, seven microcircuits). Simulations were run on
one microcircuit each of Bio-1-5 and Bio-M. Each microcircuit contains
~31,000 neurons and ~8 million connections. Data about the microcircuit
and the neuron models used in the simulations, as well as the connection
matrices, are available on https://bbp.epfl.ch/nmc-portal/ (Ramaswamy et al., 2015).
4.4. Control Networks
Additional control models of connectivity were
constructed by removing different biological constraints on
connectivity. We created three types of random matrices of sizes and
connection probabilities identical to the connectivity matrices of the
reconstructed microcircuits.
4.4.1. ER-Model (Random-Independent Graph)
An empty square connection matrix of the same size as the
connection matrix of the reconstruction was instantiated and then
randomly selected off-diagonal entries were activated. Specifically,
entries were randomly selected with equal probabilities until the same
number of entries as in the reconstruction were active. The directed
graph corresponding to such a matrix is the directed analog of an
Erdős-Rényi random graph (Erdos and Rényi, 1960).
4.4.2. PR-Model (Morphology-Only, “Peters' Rule”)
A square connection matrix was generated based on the
existence of spatial appositions between neurons in the reconstruction,
i.e., instances where the axon of one neuron is within 1 μm of a
dendrite of the other neuron. Appositions were then randomly removed
from the matrix with equal probabilities until the same number of
connections as in the reconstruction remained.
4.4.3. GB-Model (Shuffled, Preserving Distance Dependance)
The connection matrix of a reconstructed microcircuit was split into 552
submatrices based on the morphological types of pre- and postsynaptic
neurons. Each submatrix was then randomized by shuffling its connections
as follows. Connections in a sub-matrix were first grouped into bins
according to the distance between the somata of their pre- and
postsynaptic cells. Next, for each connection a new postsynaptic target
was randomly selected from the same distance bin. We selected a distance
bin size of 75μm, which was the largest bin size that preserved
the distribution of soma-distances of connected pairs of neurons in all
sub-matrices (no statistically significant difference; p > 0.05, KL-test).
4.5. Patch Clamp Experiments
4.5.1. In vitro
Connectivity between layer 5 thick-tufted pyramidal cells
was analyzed using multiple somatic whole-cell recordings (6–12 cells
simultaneously) on 300 μm slices of primary somatosensory cortex
of 14- to 16-day-old rats. Monosynaptic, direct excitatory connections
were identified by stimulation of a presynaptic cell with a 20-70 Hz
train of 5-15 strong and brief current pulses (1–2 nA, 2–4 ms).
Experiments were carried out according to the Swiss national and
institutional guidelines. Further details are explained in the
Supplementary Methods.
4.5.2. In silico
In order to obtain in silico cell groups comparable to their patched in vitro counterparts, we designed a cell selection procedure approximating several of the experimental constraints of the in vitro
patch-clamp setup used in this study and explained above. In brief,
layer 5 thick-tufted pyramidal cells were selected from a volume with
dimensions of 200 × 200 × 20 μm. The size of the volume was chosen to match the field of view usually available in the in vitro
patch-clamp setup and to account for the tendency to patch nearby
cells, which increases the probability of finding connected cells. The
total number of cells was then reduced by randomly discarding a fraction
of them, approximating the limited number of patching pipettes
available in vitro (12) and the failure rate of the patching. This filtering step was optimized to match the in silico and in vitro cluster size distributions.
4.6. C. elegans Connectome
We analyzed part of the C. elegans connectome (Varshney et al., 2011), consisting of 6,393 directed chemical synapses, obtained from www.wormatlas.org/neuronalwiring.html.
4.7. Simulation of Electrical Activity
We performed simulations of neuronal electrical activity
during stimulation with spatio-temporal patterns of thalamic input at
the in vivo-like state (as in Markram et al., 2015),
in the central microcircuit of Bio-M. Additionally, we repeated the
same simulations in the central microcircuits of the Bio-1-5
reconstructions. We ran simulations using nine different organizations
of thalamic input spike trains (see below).
4.7.1. Thalamic Stimulation
We used spike trains of 42 VPM neurons extracted from
extracellular recordings of the response to texture-induced whisker
motion in anesthetized rats, with up to nine cells in the same barreloid
recorded simultaneously (Bale et al., 2015). Each reconstructed microcircuit is innervated by 310 virtual thalamo-cortical fibers (Markram et al., 2015).
To generate sets of stimuli with different degrees of synchronous
input, we assigned to each fiber one of 5 (SS5), 15 (SS15), or 30 (SS30)
spike trains, recorded from distinct VPM neurons. In addition, we used
k-means clustering to form clusters of fibers of size 1 (SSa), 5 (SSb),
and 10 (SSc) (scikit-learn, sklearn.cluster.KMeans, Pedregosa et al., 2011)
that were assigned the same spike train. This leads to different
spatial arrangements of the identical thalamic inputs, and therefore to
different degrees of synchronous input to individual neurons in the
microcircuit.
4.8. Spike Train Correlations
We constructed postsynaptic time histograms (PSTHs) for
each neuron for each stimulus, using the mean response to 30 trials of 5
s of thalamic stimulation (with bin size of 25 ms; for additional
control, bin sizes of 10, 50, 100, 250, and 500 ms were also used). We
then computed the normalized covariance matrix of the PSTHs of all
neurons
where Cij is the covariance of the PSTHs of neurons i and j.
PSTHs of simulations with different thalamic stimuli were concatenated
for each neuron to yield an average correlation coefficient for all
stimuli. In total, correlations are based on the response of all neurons
during 30 trials of nine stimuli for 5 s of activity (22.5 min).
4.9. Transmission-Response Matrices
The temporal sequence of transmission-response matrices associated to a simulation of neuronal activity of duration T is defined as
where the n-th matrix, A(n), is a binary matrix describing spiking activity in the time interval [n·Δt1, (n + 1)·Δt1 + Δt2], and where N = T/Δt1. The (j, k)-coefficient of A(n) corresponding to the n-th time bin is 1 if and only if the following three conditions are satisfied, where sji
denotes the time of the i-th spike of neuron j.
(1) The (j, k)-coefficient of the structural matrix is 1, i.e., there is a structural connection from neuron j to neuron k, so that they form a pre-post synaptic pair.
(2) There is some i such that nΔt1≤s ji<(n+1)Δt1
, i.e., neuron j spikes in the n-th time bin.
(3) There is some l such that 0<skl−sji<Δt2
, i.e., neuron k spikes after neuron j, within a Δt2 interval.
In other words, a non-zero entry in a
transmission-response matrix denotes a presynaptic spike, closely
followed by a postsynaptic spike, maximizing the possibility of a causal
relationship between the spikes. Based on firing data from spontaneous
activity in the reconstructed microcircuit, we optimized Δti
such that the resulting transmission-response matrices best reflect the
actual sucessful transmission of signals between the neurons in the
microcircuit (see Supplementary Methods). Unless noted otherwise, Δt1 = 5 and Δt2 = 10 ms were used throughout the study.
4.10. Data Analysis and Statistical Tests
Analysis of the model and simulations was performed on a
Linux computing-cluster using Python 2.7, including the numpy and scipy
libraries (Jones et al., 2001), and custom Python scripts. We calculated p-values using Welch's t-test (scipy.stats), unless noted otherwise.
Author Contributions
HM and RL developed and initially conceived the study
over 10 years of discussions. HM, RL, and KH conceived and directed the
final study. KH and RL directed the applicability of concepts in
algebraic topology to neuroscience. HM directed the relevance of
algebraic topology in neuroscience. The Blue Brain Project team
reconstructed the microcircuit and developed the capability to simulate
the activity. MN performed the simulations. MN, MR, and PD generated the
directed flag complexes from the connection matrices for analysis. KH
and RL developed the theory for directed cliques and directed simplicial
complexes. MR and RL developed the definition of directionality within
motifs and directed cliques. MR developed the definition for
transmission response matrices. PD developed the code to isolate
simplices and directed simplices and performed initial computations. MS
performed topological and statistical analyses on the flag complexes and
on the C. elegans connectome. KT helped with initial statistical
analysis of network responses to stimuli. MR and MN analyzed the
simulation data, mapped it onto the topological data and generated the
figures. RP performed the patch-clamp experiments. GC and MR performed
the corresponding in silico experiments. HM, KH, RL, MR, and MN wrote the paper.
Conflict of Interest Statement
The authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.
Acknowledgments
This work was supported by funding from the ETH Domain
for the Blue Brain Project and the Laboratory of Neural Microcircuitry.
The Blue Brain Project's IBM BlueGene/Q system, BlueBrain IV, is funded
by the ETH Board and hosted at the Swiss National Supercomputing Center
(CSCS). MS was supported by the NCCR Synapsy grant of the Swiss National
Science Foundation. Partial support for PD was provided by the GUDHI
project, supported by an Advanced Investigator Grant of the European
Research Council and hosted by INRIA. We thank Eilif Muller for
providing input on the analysis, Magdalena Kedziorek for help with
proving maximality in directed cliques, Gard Spreemann for help with the
analysis of the C. elegans connectome, and Taylor H. Newton for helpful discussions about statistical methods.
Supplementary Material
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fncom.2017.00048/full#supplementary-material
References
Braitenberg, V. (1978). “Cell assemblies in the cerebral cortex,” in Theoretical Approaches to Complex Systems, eds R. Heim and G. Palm (Berlin; Heidelberg: Springer), 171–188. Available online at: http://www.springer.com/cn/book/9783540087571
Jones, E., Oliphant, T., and Peterson, P., and others (2001). SciPy: Open Source Scientific Tools for Python. Available online at: https://www.scipy.org/citing.html (Accessed November 11, 2016).
Pedregosa, F.,
Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830. Available online at: http://www.jmlr.org/papers/v12/pedregosa11a.html
Keywords: connectomics, topology, directed networks, structure-function, correlations, Betti numbers
Citation: Reimann MW, Nolte M, Scolamiero M, Turner K, Perin R, Chindemi G, Dłotko P, Levi R, Hess K and Markram H (2017) Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function. Front. Comput. Neurosci. 11:48. doi: 10.3389/fncom.2017.00048
*Correspondence: Henry Markram, henry.markram@epfl.ch
Kathryn Hess, kathryn.hess@epfl.ch
†These authors have contributed equally to this work.
‡Co-senior author.
Citation: Reimann MW, Nolte M, Scolamiero M, Turner K, Perin R, Chindemi G, Dłotko P, Levi R, Hess K and Markram H (2017) Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function. Front. Comput. Neurosci. 11:48. doi: 10.3389/fncom.2017.00048
Received: 11 March 2017; Accepted: 18 May 2017;
Published: 12 June 2017.
Published: 12 June 2017.
Edited by:
Paul Miller, Brandeis University, United States
Paul Miller, Brandeis University, United States
Reviewed by:
Cees van Leeuwen, KU Leuven, Belgium
Andreas Knoblauch, Hochschule Albstadt-Sigmaringen, Germany
Copyright © 2017 Reimann, Nolte, Scolamiero, Turner,
Perin, Chindemi, Dłotko, Levi, Hess and Markram. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.Cees van Leeuwen, KU Leuven, Belgium
Andreas Knoblauch, Hochschule Albstadt-Sigmaringen, Germany
*Correspondence: Henry Markram, henry.markram@epfl.ch
Kathryn Hess, kathryn.hess@epfl.ch
†These authors have contributed equally to this work.
‡Co-senior author.
No comments:
Post a Comment