The take home is that if we site
windmills in a pattern conforming to schools of fish, we can increase actual
energy density by ten fold. There are
plenty of locales were this will be important.
It certainly makes a landowner happy as he is looking at a ten fold
increase in rentals.
Thus the established wind farm
infrastructure will be able to sustain a tenfold increase in production without
adding new projects.
It is nice to see we even have
field confirmation already.
Obviously, the best thing to do
is optimize those well away from living quarters to avoid the noise pollution
problem which is likely to become a bigger thorn as we progress.
Know the Flow: How Jellyfish Can Improve Wind Farms
The engineer and recent MacArthur "genius" grant winner
thinks we have much to learn from the humble jellyfish
By Michael Moyer | December 15,
2010 | 0
Name: John Dabiri
Ttile: Associate professor of aeronautics and bioengineering,
California Institute of Technology 2010
MacArthur fellow Location: Pasadena ,
Calif.
What do you do every day? Quite a few different things. On a given day
we could be working on wind energy or working with the navy on underwater
vehicles. We have, in our laboratory, live jellyfish in the upstairs labs and,
downstairs, robotic vehicles that we design. We study biological systems and
try to steal ideas from nature to apply to technology.
Does the navy want a submarine that looks like a jellyfish? Our designs
don’t look like robotic jellyfish per se. We take the existing platforms that
the navy uses—the propeller-driven vehicles—and try to modify them to create
the flows that we see in jellyfish.
Something like putting a spoiler on the back of a race car? That’s
probably a good analogy—one of these things that modify an existing system to
enhance its performance. Certainly we could imagine building things that were
more like jellyfish or squid in their nature. But what we’re really waiting for
is for the materials scientists to come up with something that provides the
flexibility that you would want and at the same time has the strength and the
resilience that you would expect from a vehicle that’s going to be in the water
for many years at a time.
You recently showed that studies of fish schooling can aid wind-farm
design. How does that work? The challenge with existing horizontal-axis wind
turbines is that they need a lot of space; you have to separate the turbines so
that their wakes don’t interact. So we started to explore vertical-axis wind
turbines, which rotate on a vertical pole and can take wind from any direction.
As I was starting to model the equations for the wind field around a turbine,
it was sort of one of these eureka moments—I realized that they were very
similar to the equations that we saw previously studying fish schooling. Fish
arrange themselves to minimize the amount of energy that’s required for the
group to go from point A to point B. Our aim would be to try to maximize
the amount of energy that is extracted from these vertical-axis turbines.
So in your model, you are able to get 10 times higher energy density?
Not just in our models. Over this past summer we have done small field tests,
and the predictions of the model have been borne out.
Sounds like you’ve got your first business. [Laughs] I think what we’re
really aiming to do is to change people’s minds about wind energy. People call
it the most mature of the renewable energy technologies, where the future is:
Can we build them larger? Can we put them offshore? But there are some
fundamental advances that can be made if we reconsider whether the three-bladed
turbine is the optimal solution.
If everyone could know one thing about your work, what would it be?
Technology is ever evolving. While there’s a lot of opposition to the current
platform for wind energy, there are better options to come. There’s no need to
settle just yet.
No comments:
Post a Comment