This work is not too convincing only because of the small scale effect. However direction is established with the cone and we are naturally omitting the presence of dark matter in our considerations. I would like to see this operated in a pitch dark room and top then turn it off and to then watch it as any visible radiation died down.
We will surely be also reacting against natural em fields in space in order to produce thrust. Yet our knowledge of dark matter and how to release a flood of energy is also something to properly tap as well. So the first question is to ask how we can scale up the power input in this device.
I think that the response will be non linear and that will quickly qualify this discovery.
.
NASA Team Claims ‘Impossible’ Space Engine Works—Get the Facts
Scientists just published a paper saying that the controversial EmDrive produces thrust, even though that defies known laws of physics.
A prototype of the EmDrive, as seen in a test chamber at a NASA lab
by Nadia Drake
PUBLISHED November 21, 2016
http://news.nationalgeographic.com/2016/11/nasa-impossible-emdrive-physics-peer-review-space-science/
After years of speculation, a maverick research team at NASA’s Johnson Space Center has reached a milestone that many experts thought was impossible. This week, the team formally published their experimental evidence for an electromagnetic propulsion system that could power a spacecraft through the void—without using any kind of propellant.
According to the team, the electromagnetic drive, or EmDrive, converts electricity into thrust simply by bouncing around microwaves in a closed cavity. In theory, such a lightweight engine could one day send a spacecraft to Mars in just 70 days.
The long-standing catch is that the EmDrive seemingly defies the laws of classical physics, so even if it’s doing what the team claims, scientists still aren’t sure how the thing actually works. Previous reports about the engine have been met with heaping doses of skepticism, with many physicists relegating the EmDrive to the world of pseudoscience.
Now, though, the latest study has passed a level of scrutiny by
independent scientists that suggests the EmDrive really does work. Is
this the beginning of a revolution in space travel—or just another false
start for the “impossible” spaceship engine?
What’s an EmDrive?
First proposed nearly 20 years ago by British scientist Roger
Shawyer, this incarnation of the EmDrive has been developed and tested
by engineers at NASA’s Advanced Propulsion Physics Research Laboratory, informally known as Eagleworks.
Put simply, the Eagleworks EmDrive generates thrust by bouncing
around electromagnetic energy (in this case, microwave photons) in a
closed, cone-shaped chamber. As those photons collide with the chamber’s
walls, they somehow propel the device forward, despite the fact that
nothing is released from the chamber. By contrast, ion drives now in use
on some NASA spacecraft create thrust by ionizing a propellant, often
xenon gas, and shooting out beams of charged atoms.
What this means, if the EmDrive withstands further scrutiny, is that
future vehicles could hurtle through space without needing to carry
literal tons of propellant. In space travel, staying light is crucial
for fast and cost-effective trips over long distances.
Why does this engine break the laws of physics?
Way back in 1687, Sir Isaac Newton
published three laws of motion that formed the foundation for classical
mechanics. Over the intervening three centuries, those laws have been
tested and verified over and over again. (Also see “Isaac Newton’s Lost Alchemy Recipe Rediscovered.”)
The trouble is, the EmDrive violates Newton’s third law, which states
that for every action, there is an equal and opposing reaction. This
principle explains, for instance, why a canoe glides forward when
someone paddles. The force applied as the paddle moves through the water
propels the canoe in the opposite direction. It’s also why jet engines generate thrust: As the engine expels hot gases backward, the plane moves forward.
Weirdly, the EmDrive doesn’t expel anything at all, and that doesn’t
make sense in light of Newton’s third law or another tenet of classical
mechanics, the conservation of momentum. If the EmDrive moves forward
without expelling anything out the back, then there’s no opposing force
to explain the thrust. It’s a bit like arguing that a person inside a
car could propel it forward by repeatedly hitting the steering wheel, or
that the crew of a spaceship could fly the craft to their destination
simply by pushing on the walls.
Has anyone tried to test it before?
In 2014, the Eagleworks group made waves
when it announced the results of early tests suggesting the EM engine
actually worked. Since then, the group has tested the EmDrive in
increasingly more stringent conditions, including the latest
experiments.
Other groups have also developed and tested various incarnations of the EmDrive. In addition to experiments conducted by U.S., European, and Chinese academics,
there’s a community of DIY EmDrivers who are busy making and testing
their own impossible physics engines. But no one has been able to say
conclusively that such a drive has worked as described. (Let’s be real:
Physicists don’t like seemingly miraculous inventions.)
So what’s different now?
Now, the NASA team behind the EmDrive has published the results of their experiments in a peer-reviewed journal. While peer review doesn’t guarantee that a finding or observation is valid,
it does indicate that at least a few independent scientists looked over
the experimental setup, results, and interpretation and found it all to
be reasonable.
In this paper, the team describes how they tested the EmDrive in a
near vacuum, similar to what it would encounter in space. Scientists
placed the engine on a device called a torsion pendulum, fired it up,
and determined how much thrust it generated based on how much it moved.
Turns out, the EmDrive is capable of producing 1.2 millinewtons per
kilowatt of energy, according to the authors’ estimates.
That’s not a lot of thrust compared to more traditional engines, but
it’s far from insignificant considering the completely fuel-free setup.
And to put that in perspective, light sails and other related technologies—which
are propelled by the push of photons—only generate a fraction of that
thrust, between 3.33 and 6.67 micronewtons per kilowatt.
Before now, one of the major criticisms about the EmDrive is that it warmed up while activated,
which some scientists suggested could heat the surrounding air and
generate thrust. Testing the device in a vacuum resolved some of that
criticism, though there are still loads of caveats that need addressing.
OK. How is that possible?
First things first: It’s still unclear that the EmDrive truly
generates thrust, a claim that will require further verification. But
people are already tossing around ideas for how the drive might work.
The Eagleworks team that tested the EmDrive thinks the microwave
photons push against “quantum vacuum virtual plasma,” or a roiling sea
of particles that flit in and out of existence at the quantum level. The
trouble is, there’s no evidence that quantum vacuum virtual plasma is even a real thing, says Caltech physicist Sean Carroll. Quantum vacuums exist, he says, but they don’t generate a plasma that’s available for pushing against.
In their paper, the Eagleworks team invokes an idea called pilot-wave theory
to describe how the quantum vacuum could be used to generate thrust,
while noting that such interpretations are “not the dominant view of
physics today.”
Mike McCulloch,
a physicist at the University of Plymouth, argues that the EmDrive is
evidence of a new theory of inertia that involves something called Unruh
radiation, a sort of heat experienced by accelerating objects. In his
telling, since the wide and narrow ends of the EmDrive’s cone permit
different wavelengths of Unruh radiation, the inertia of the photons
inside the cavity must change as they bounce back and forth—which must produce thrust in order to conserve momentum.
But McCulloch’s model assumes that Unruh radiation is real—it hasn’t
been experimentally confirmed—and also suggests that the speed of light
varies within the EmDrive’s cavity, which violates Einstein’s theory of special relativity, according to Rochester Institute of Technology physicist Brian Koberlein.
It’s also possible that some of the energy generated as a body accelerates is being stored within the body itself,
to put it very, very simply—there are also gravitational interactions
and transient inertial mass fluctuations involved. This could explain
how the craft moves through space without violating the conservation of
momentum, says physicist Jim Woodward, who proposed what’s called the Mach effect theory in 1990.
Could this still be bunk?
For sure. There’s a long history of findings that seemingly defy the laws of physics (faster-than-light neutrinos, anyone?) that were ultimately shown to be casualties of faulty experimentation.
In this paper, the authors identify and discuss nine potential
sources of experimental errors, including rogue air currents, leaky
electromagnetic radiation, and magnetic interactions. Not all of them
could be completely ruled out, and more experimentation is definitely
needed … perhaps next time in space.
No comments:
Post a Comment