As I have been saying one way or
the other, modern agriculture is improving in many directions while slowly been
harnessed to a true common good however that is properly defined. The natural vision is utopian but also
realistically achievable with a mastery of local incentives and manpower
resources in such a way as to produce willingly the best possible outcome.
It needs to become possible to
strip a woodlot of fallen wood every two to three years or so. It needs to be possible to fill that open
woodlot with a variety of animals and to manage the harvest of those
animals. It needs to be possible to
establish rich pasture land with occasional shade trees to promote a variety of
fodder.
The crop lands themselves need to
be beneficiated with biochar to stabilize the fertilizer loading.
All this needs to be worked in cooperation
with one’s neighbors toward a common goal that improves each others operations.
The revelation that organic can match industrial cropping is a harbinger of the future.
Researchers propose 'whole-system redesign' of U.S. agriculture
MAY 05, 2011
Incremental improvements to agriculture have been which have
included adoption of two-year crop rotations, precision agriculture
technologies, classically bred and genetically engineered crops, and reduced-
or no-tillage management systems.
US David researchers are recommending innovative agricultural systems such as organic farming, grass-fed and other alternative livestock production systems, mixed crop and livestock systems, and perennial grains. And it would require significant changes in market structures, policy incentives and public funding for agricultural science, according to the report.
US David researchers are recommending innovative agricultural systems such as organic farming, grass-fed and other alternative livestock production systems, mixed crop and livestock systems, and perennial grains. And it would require significant changes in market structures, policy incentives and public funding for agricultural science, according to the report.
Toward Sustainable Agricultural Systems in the 21st Century (570 pages)
Modern American agriculture has had an impressive history of increasing productivity that has resulted in affordable food, feed, fiber, and more recently, biofuel crops for domestic purposes and agricultural exports. Although the
Although small and medium-sized farms represent more than 90 percent of total farm numbers and manage about half of U.S. farmland and other farm assets, U.S. agriculture has become increasingly dependent on large-scale, high-input farms that specialize in a few crops and concentrated animal production practices for most U.S farm products. In 2007, the largest 2 percent of
Many modern agricultural practices have unintended negative consequences, or externalized costs of production, that are mostly unaccounted for in agricultural productivity measurements or by farm enterprise budgets. Loss of water quality through nitrogen and phosphorus loadings in rivers, streams, and ground water contributes to dramatic shifts in aquatic ecosystems and hypoxic zones. Agricultural pesticides can contaminate streams, ground water, and wells. Excessive use of certain pesticides could be harmful to agricultural workers and might pose food safety risks. The nutrient density of 43 garden crops (mostly vegetables) has been shown to have declined between 1950 and 1999 in the
Sustainability has been described as the ability to provide for core societal needs in a way that can be readily continued into the indefinite future without significant negative effects. Accordingly, measuring progress toward sustainability will be inherently subjective if different groups in society have different goals and objectives for agriculture. Even with broad agreement for certain goals, the relative importance assigned to one goal over another will be highly contested. Developing a widely accepted vision of what agricultural sustainability should be is beyond the scope of this report. However, four generally agreed-upon goals help define a sustainable agriculture:
Satisfy human food, feed, and fiber needs, and contribute to biofuel needs.
Enhance environmental quality and the resource base.
Sustain the economic viability of agriculture.
Enhance the quality of life for farmers, farm workers, and society as a whole.
The committee concluded that if U.S. agricultural production is to meet the challenge of maintaining long-term adequacy of food, fiber, feed, and biofuels under scarce or declining resources and under challenges posed by climate change and to minimize negative outcomes, agricultural production will have to substantially accelerate progress toward the four sustainability goals. Such acceleration needs to be undergirded by research and policy evolution that are designed to reduce tradeoffs and enhance synergies between the four goals and to manage risks and uncertainties associated with their pursuit.
Measuring Progress Toward Sustainability
Sustainability is best evaluated not as a particular end state, but rather as a process that moves farming systems along a trajectory toward greater sustainability on each of the four goals. For this report, the committee’s definition of sustainable agriculture does not make a sharp dichotomy between conventional and sustainable farming systems, not only because farming enterprises reflect many combinations of farming practices, organization forms, and management strategies, but also because most types of farming systems can potentially contribute to achieving various sustainability goals and objectives. Pursuit of sustainability is not a matter of defining sustainable or unsustainable agriculture, but rather of assessing whether choices of farming practices and farming systems would lead to a more or less sustainable system as measured by the four goals.
Finding ways to measure progress along a sustainability trajectory is an important part of the experimentation and adaptive management process.
If
Developing collaborative efforts between disciplinary experts and civil society to construct a collective and integrated vision for a future of
Encouraging and accelerating the development of new markets and legal frameworks that embody and pursue the collective vision of the sustainable future of
Pursuing research and extension that integrate multiple disciplines relevant to all four goals of agricultural sustainability.
Identifying and researching the potential of new forms of production systems that represent a dramatic departure from (rather than incremental improvement of) the dominant systems of present-day American agriculture.
Identifying and researching system characteristics that increase resilience and adaptability in the face of changing conditions.
Adjusting the mix of farming system types and the practices used in them at the landscape level to address major regional problems such as water overdraft and environmental contamination.
Soil and plant tissue tests, nutrient management plans, and precision agriculture technologies help farmers increase productivity, input-use efficiency, and economic returns, by reducing unnecessary use of agricultural fertilizers, pesticides, or water. Experimental and long-term field studies suggest that the impacts and economic benefits of those practices and tools can be variable across time and space.
Manure, compost, and green manure, as often used in organic systems, can reduce the need for synthetic fertilizer and hence reduce the energy used for fertilizer production. Many farms featured as case studies in this report make successful use of on-farm inputs for soil fertility (for example, animal and green manure), which insulates them from fluctuations in costs of synthetic fertilizer. Published studies, however, show variable results as to whether systems using commercial fertilizers or systems using cover crop-based or animal manure-based nutrient management have higher profits. Those studies often do not include environmental costs and benefits. Because the release of nutrients from manure, compost, and green manure depends on various factors, including temperature, soil properties, and microbial activities in soil, their application has to be timed appropriately to maximize nutrient uptake by plants, and hence productivity and net economic return.
Integrated pest management (IPM) research has identified promising options for improving soil suppressiveness and inducing crop resistance to some diseases and pests in addition to classical biological and ecological pest management. The need to study weeds, diseases, pests, and crops as an interacting complex has been recognized. Adoption of IPM has been reasonable on some crops, but overall IPM use is lagging despite its potential for reducing chemical use.
Livestock genetic improvement can contribute to improving sustainability by increasing feed-use efficiency and by selecting traits to improve animal health and welfare. Improvements in feed conversion through genetics, nutrition, and management have reduced manure and nutrient excretion per unit animal product produced and reduced land required for production.
Business and Marketing Strategies
Diversification of farm enterprises can provide multiple income streams for farming operations. Producing a range of farm crops and animal products can enhance the stability and resilience of farm businesses and can decrease the volatility of farm income. Studies that document the economic effects of modern strategies for enterprise diversification are sparse.
In addition to using production strategies that reduce costs, farmers can increase their farm-level income by increasing the value of their products through sales to niche markets (such as organic or health-food markets) or by selling their products directly to consumers (direct sales) to obtain a larger proportion of the consumers’ dollar spent on the product and to gain control over the prices they get for their products.
Practices for Improving Community Well-being
Diverse farm systems, diversified landscapes (for example, inclusion of non-crop vegetation), and farming practices that improve water and air quality can contribute to community and social well-being. Some direct marketing strategies, such as direct sales at farmers’ markets, community supported agriculture, farm-to-school programs, and agritourism, connect farmers to the community and can contribute to community economic security, but lack underpinning research and extension.
No comments:
Post a Comment