Showing posts with label Qattara. Show all posts
Showing posts with label Qattara. Show all posts

Wednesday, February 4, 2009

Growing Nile Delta Fishery

Sometimes, Mother Nature has a lesson to teach us. When the dam was built, the fishery collapse and the loss of the annual floods were quite rightly seen as an environmental disaster and must still be seen as such.

That modern fertilization has sustained the fertility of the farmland was a resulting necessity. That improved methods will serve to surpass the best that the Nile floods could do is inevitable.

That this should result in a tripling of the delta fishery has made everyone happy.

There is still plenty to do with the Nile. Sooner or later, Lake Nasser will completely silt up and the Aswan high dam will have to be abandoned and the annual floods will again dominate the lower Nile.

Alternatively, a barrage could be built upriver that diverts the surplus flood waters into the Qattara Depression a few miles west of the Nile, thereby creating a second Nile valley and a large new lake and delta system.

That would be a fitting monument for the descendents of the pyramid builders.

Nile Delta Fishery Grows Dramatically
by Staff Writers

Narragansett RI (SPX) Jan 27, 2009

http://www.seeddaily.com/reports/Nile_Delta_Fishery_Grows_Dramatically_999.html

While many of the world's fisheries are in serious decline, the coastal Mediterranean fishery off the Nile Delta has expanded dramatically since the 1980s.

The surprising cause of this expansion, which followed a collapse of the fishery after completion of the Aswan High Dam in 1965, is run-off of fertilizers and sewage discharges in the region, according to a researcher at the University of Rhode Island Graduate School of Oceanography.

Autumn Oczkowski, a URI doctoral student, used stable isotopes of nitrogen to demonstrate that 60 to 100 percent of the current fishery production is supported by nutrients from fertilizer and sewage. Her research will be reported in the Jan. 21 online edition of the Proceedings of the National Academy of Sciences.

"This is really a story about how people unintentionally impact ecosystems," Oczkowski said.

Historically, the Nile would flood the delta every fall, irrigate nearby agricultural land, and flow out to the Mediterranean, carrying with it nutrients to support a large and productive fishery. Construction of the dam stopped the flooding, and the fishery collapsed.

"That's when fertilizer consumption in the country skyrocketed," said Oczkowski. "The Egyptians were fertilizing the land, and then fertilizing the sea with the run-off. It also corresponded with a population boom and the expansion of the public water and sewer systems."

As a result, landings of fish in coastal and offshore waters are more than three times pre-dam levels. While increased fishing effort in recent years may have played some role in the recovery, Oczkowski's findings indicate that anthropogenic nutrient sources have now more than replaced the fertility carried by the historical flooding.

Oczkowski and colleagues from URI, the U.S. Environmental Protection Agency, and the University of Alexandria collected more than 600 fish in 2006 and 2007 from four regions that received run-off from the delta and two areas not affected by the Nile drainage. Stable isotopes of nitrogen in each fish were measured and compared.

She found that the isotope signatures in the fish reflected two distinct sources of nitrogen: anthropogenic nitrogen from fertilizers and sewage in the fish caught in coastal and offshore areas of the delta, and nitrogen values consistent with the middle of the Mediterranean in fish caught in waters that were not affected by the delta drainage.

These results have raised questions among many scientists about the value of anthropogenic sources of nutrients to ecosystems.

"We're programmed in the West to think of nutrient enrichment of coastal systems as bad," Oczkowski said. "Here in Rhode Island we've spent hundreds of millions of dollars to upgrade sewage plants to reduce nutrient loading into Narragansett Bay. And it's a major issue in the Chesapeake Bay and in the Gulf of Mexico, where run-off of fertilizers from the country's breadbasket into the Mississippi River has caused a dead zone in the Gulf.

"But the Egyptians don't think it's a bad thing. For them, it's producing tons of fish and feeding millions of hungry people. It's forcing us to reconsider whether we can say that nutrient inputs are always a bad thing."

Wednesday, October 10, 2007

Egyptian Desert Irrigation

A delightful item yesterday. They are starting to grow trees out in the Egyptian desert beside the Nile. They are relying on some form of direct irrigation from the river. As someone who grew up in a world were the Middle East seemed to resist any simple application of common sense that might imply spending money on the potential welfare of the people, this is refreshing.

We do not know the scale anticipated, but we only have to think of the Great Valley of California to grasp the potential. This will also open up living space for the population among the orange groves.

This particular corner of the Sahara will be totally dependent on river water for as long as the remainder of the Sahara remains untouched. It is as far down wind as one can be without been in Saudi Arabia. I do not think that there is enough atmospheric water available in this part of the desert to ever hope to harvest water that way. We have to wait for the forests to be expanded up to these regions.

For those who like massive engineering schemes that can impact local climate there is the Qattara depression. It is below sea level covering 80 by 120 kilometers and runs sub parallel to the Nile at a distance of less than 100 kilometers. Filling it with sea water is a rather attractive option and using the intake flow as a power source is an option. More interesting, it has been proposed that the Nile flood waters could be diverted into desert channels that would end up in this same depression. The barrage would be built far to the south in the Sudan, I think, and would create a separate riverine system.

This hydraulic system would be a natural replacement for the Aswan High Dam which will eventually silt up and become useless as a storage reservoirs.

In the meantime, really good water management can provide a green cover for thousands of square miles of desert around these riverine systems. And eventually all the Sahara can have a green cover thanks to atmospheric water harvesting, and this will also induce a natural hydraulic cycle that will include ample rainfall now so sorely missing.

It ia all possible and it is good to see the Egyptians taking the first steps.