Showing posts with label harvard. Show all posts
Showing posts with label harvard. Show all posts

Thursday, April 23, 2009

Cyclones Water Jet Stratosphere

This is a neat bit of science. The link to global warming is a lot more tenuous. Any water in the stratosphere is absorbing heat and you are certainly well above the working atmosphere. So is the troposphere for that matter and it is where all the excess methane goes to die.

We have a mechanism for putting water vapor into the stratosphere. So far - so good. It increased over fifty years by fifty percent. I suspect that we have one measurement from 1958 and a few recent results. It has been warmer so that we should have higher moisture.

However, just how much are we talking about? The mechanism alone suggests that the amount is negligible. At least we know why it is there. Otherwise there should be none.

Absolutely none of this has anything to do with the real atmosphere since they are by mass way to small and do not mix at all in a significant manner.

There is no plausible link to global warming in what we have just described.

Cyclones Spurt Water Into The Stratosphere And Feed Global Warming

by Staff WritersCambridge MA (SPX) Apr 22, 2009

http://www.terradaily.com/reports/Cyclones_Spurt_Water_Into_The_Stratosphere_And_Feed_Global_Warming_999.html
Scientists at Harvard University have found that tropical cyclones readily inject ice far into the stratosphere, possibly feeding global warming.

The finding, published in Geophysical Research Letters, provides more evidence of the intertwining of severe weather and global warming by demonstrating a mechanism by which storms could drive climate change. Many scientists now believe that global warming, in turn, is likely to increase the severity of tropical cyclones.

"Since water vapor is an important greenhouse gas, an increase of water vapor in the stratosphere would warm the Earth's surface," says David M. Romps, a research associate in Harvard's Department of Earth and Planetary science.

"Our finding that tropical cyclones are responsible for many of the clouds in the stratosphere opens up the possibility that these storms could affect global climate, in addition to the oft-mentioned possibility of climate change affecting the frequency and intensity of tropical cyclones."

Romps and co-author Zhiming Kuang, assistant professor of climate science in Harvard's Faculty of Arts and Sciences, were intrigued by earlier data suggesting that the amount of water vapor in the stratosphere has grown by roughly 50 percent over the past 50 years.

Scientists are currently unsure why this increase has occurred; the Harvard researchers sought to examine the possibility that tropical cyclones might have contributed by sending a large fraction of their clouds into the stratosphere.

Using infrared satellite data gathered from 1983 to 2006, Romps and Kuang analyzed towering cloud tops associated with thousands of tropical cyclones, many of them near the Philippines, Mexico, and Central America.

Their analysis demonstrated that in a cyclone, narrow plumes of miles-tall storm clouds can rise so explosively through the atmosphere that they often push into the stratosphere.

Romps and Kuang found that tropical cyclones are twice as likely as other storms to punch into the normally cloud-free stratosphere, and four times as likely to inject ice deep into the stratosphere.

"It is ... widely believed that global warming will lead to changes in the frequency and intensity of tropical cyclones," Romps and Kuang write in Geophysical Research Letters.

"Therefore, the results presented here establish the possibility for a feedback between tropical cyclones and global climate."

Typically, very little water is allowed passage through the stratosphere's lower boundary, known as the tropopause. Located some 6 to 11 miles above the Earth's surface, the tropopause is the coldest part of the Earth's atmosphere, making it a barrier to the lifting of water vapor into the stratosphere: As air passes slowly through the tropopause, it gets so cold that most of its water vapor freezes out and falls away.

But if very deep clouds, such as those in a tropical cyclone that can rise through the atmosphere at speeds of up to 40 miles per hour, can punch through the tropopause too quickly for this to happen, they can deposit their ice in the warmer overlying stratosphere, where it then evaporates.

"This suggests that tropical cyclones could play an important role in setting the humidity of the stratosphere," Romps and Kuang write.

Monday, January 12, 2009

Casimir Levitation

This is a nifty discovery and an obviously important one. And yes, you had better read up on the Casimir effect.

This experiment means that we can control the effects sign and this now gives us a powerful tool for designing things in the nanometer scaled world. You may now let your imagination run wild.

Wednesday, January 7, 2009

http://www.medgadget.com/archives/img/levitating_gold_ball.jpg

Harvard University researchers have finally observed the repulsive Casimir force, a quantum phenomenon that was predicted back in the 1940's. The force comes into effect only when two particles locate themselves very close to each other, provided a few other parameters are true (see Wikipedia entry:
Casimir effect). Now with new knowledge of how to use the force (no pun intended), scientists should be able to build more complicated nano devices.

From Harvard:

“Repulsive Casimir forces are of great interest since they can be used in new ultra-sensitive force and torque sensors to levitate an object immersed in a fluid at nanometric distances above a surface,” said Federico Capasso, Robert L. Wallace Professor of Applied Physics at Harvard's School of Engineering and Applied Sciences (SEAS), who led the study. “Further, these objects are free to rotate or translate relative to each other with minimal static friction because their surfaces never come into direct contact.”

The results from Capasso’s and his colleagues’ work will be published in tomorrow's edition of the journal Nature. Capasso's co-authors are Jeremy Munday, formerly a graduate student in Harvard's Department of Physics and presently a postdoctoral researcher at the California Institute of Technology, and V. Adrian Parsegian, senior investigator at the NIH in Bethesda, Md.

The discovery builds on previous work related to the Casimir force, which was theorized by Hendrick Casimir in 1948 as both attractive and repulsive, pulling materials together under some circumstances and pushing them apart under others.

Until now, however, researchers have only been able to measure the attractive Casimir force, which, in some cases, has created headaches for nano-engineers because it can cause the components of tiny devices to stick together. Discovery of the repulsive version of the Casimir force can potentially help researchers overcome this problem.

“When two surfaces of the same material, such as gold, are separated by vacuum, air, or a fluid, the resulting force is always attractive,” explained Capasso.

Instead of using gold-coated materials, Capasso and colleagues swapped out one of the gold surfaces for one made of silica, then immersed them both in a liquid, bromobenzene. That combination did the trick, switching the attractive Casimir force to repulsive. The Harvard researchers have filed for a U.S. patent covering nanodevices based on quantum levitation.

Harvard news office press release:
Researchers see exotic force for first time...

Image: An artist's rendering shows a gold sphere, in the foreground, immersed in bromobenzene, allowing it to levitate above a silica plate. When the plate is replaced by one of gold, as seen in the background, levitation is impossible. Image courtesy of Federico Capasso/SEAS