Showing posts with label grid. Show all posts
Showing posts with label grid. Show all posts

Monday, February 22, 2010

Bloombox on 60 Minutes




I listened to the claims made tonight and can make some observations.

This is a fuel cell technology and the fabricated panels appear reasonable on the face of it.  The energy output per panel is extraordinary and in view of the established field tests, must be accepted.

More importantly, the energy conversion from any given fuel is twice what is possible by a thermal plant.  Again this is reasonable and even expected.  Most folks have no idea just how much energy is carried away in a heat engine, and going from a 33% efficiency to a 60% efficiency is great.

They make the claim that any sort of fuel can be used.  I would be happy to be able to use fuel oil at twice the present efficiency rate supplied by diesel engines. The reason fuel cells stalled was that the chemistry created all sorts of problems.  Heating it to 600 degrees can free all the hydrogen but clog the system with carbon.  The idea has been to use hydrogen and oxygen to produce direct current.  The promise implied here is that this has now changed and we are able to consume a range of organics.

A comment was made that solar fits into this and we do not understand what that means and is likely unrelated to the direct process.

The key claim is that a very efficient fuel cell has been made and is been successfully field tested with a lot of clients who will not go along with fudging by anyone.  Let us accept that as true for the nonce.

What it does do is separate energy users from power grids and attaches them to fuel grids, whether natural gas, fuel oil or biofuel.  The apparent energy output is strong enough to adapt to present electrical demands though that is now likely to decline as innovation moves to optimize local energy use.  It did not matter too much when an ocean of power was on the grid.

To put this in perspective, although we are comparing apples, oranges and bananas, The direct conversion of fuel to electrical power on demand doubles the available power.  Releasing the energy of the power grid eliminates line losses equal to at least half of the power produced.

Roughly speaking, this technology provides a four fold energy output potential from the present energy base of the USA economy.  It could even by modified for automobiles as small units to transition to electrical vehicles.  The engine disappears and is replaced with a fraction of the fuel and the Bloombox.

There is certainly enough room in the energy equations involved to make this fly.


Is K.R. Sridhar’s 'magic box' ready for prime time?

February 19, 2010 4:33 PM


Bloom CEO K.R. Sridhar holding the ceramic plates that are stacked up into modules to create the company's "Bloom Box" fuel cells.

The Bloom Energy CEO is finally unveiling his entry in the fuel-cell arena after years of playing it close to the vest.

By Paul Keegan, contributor

K.R. Sridhar looks nervous. The CEO of Bloom Energy, the much-hyped fuel cell start-up, sits in a conference room preparing to show off his magical “Bloom Box” for the first time in public. The 49-year-old scientist-turned entrepreneur has raised $400 million in venture capital for his Sunnyvale, California company, but until now Sridhar has revealed almost nothing about what his company has actually produced since it launched eight years ago.

“In our eight-year history, this is the first time I’m sitting down with anybody who’s not wearing a Bloom badge,” he says with a laugh. “So it’s a big deal.”

Thus begins the opening salvo of a full-bore media assault by this soft-spoken mechanical engineer that will soon be followed by a 60 Minutes segment on CBS on Sunday and a big press event on Wednesday in Silicon Valley. On the dais at Bloom’s coming-out party will be board member Colin Powell, California governor Arnold Schwarzenegger, and John Doerr of Kleiner, Perkins, Caulfield & Byers, the blue-chip venture capital firm that jump-started the Bloom bandwagon back in 2002 (New Enterprise Associates and Morgan Stanley were also early believers). The event will be held at eBay (EBAY) headquarters in San Jose, one of its first customers – along with Google (GOOG), Wal-Mart (WMT), FedEx (FDX), and Staples (SPLS) – and CEO John Donahoe is expected to rave about the potential of these little black boxes that Sridhar claims will “change the world.”

Those dark spots on photos of earth taken from outer space? Ablaze with light. That old, unreliable grid mostly powered by dirty coal? Obsolete, since Bloom boxes are basically tiny power plants installed right in your back yard, next to the dumpster at your corporate campus, or at your local electric-car charging station – though they can also be connected to an electrical grid just like your PC connects to the Internet. Hydrocarbons such as natural gas or biofuel (stored in an adjacent tank) are pumped into the Bloom Box – ceramic plates stacked atop each other to form modules that can be assembled into a unit of any size – and out comes abundant, reliable, cleaner electricity. The company says the unit does not vibrate, emits no sound, and has no smell.

Sridhar, an India-born PhD who once led a team of NASA scientists trying to develop the technology to sustain life on Mars, holds one of the modules in his hand. Stacking them into a bread loaf-sized unit, he says, can produce one kilowatt of electricity, enough to power an American home. Sridhar explains that it has taken so long to produce this contraption because he is building not just a company but an entire industry. “You are used to market sizes that start with a ‘B’,” he told venture capitalists when the company launched in 2002. “This is a market size that starts with a ‘T’.”

Alas, the fuel cell industry – for all the genuine promise and outrageous claims of the last 50 years – is still one with profit margins that start not with “T,” “B,” or even “M,” but with a minus sign. Bloom lost $85 million in 2008, according to venture capitalists that have seen its business plan, roughly on par with other fuel-cell companies building energy boxes much like Bloom’s. The reason is simple: fuel cells are still too expensive – at least until there is a market to produce them on a mass scale.

Google told Fortune that it has a 400 kilowatt installation from Bloom at its headquarters in Mountain View, California. But the real test, analysts say, is whether Google feels confident enough to use Bloom boxes to power its vast server farms upon which its business depends.

“I definitely think Bloom is over-hyped,” says Jacob Grose, senior analyst at Lux Research, which specializes in emerging technologies, though he stresses that he hasn’t seen the soon-to-be-unveiled Bloom box. “What Bloom offers does not seem to be unique – other fuel-cell companies are doing very similar things. The real question is whether Bloom has unlocked the secret of how to make these things cheap, and I’m very skeptical of that.”

One company that Grose points to as offering a similar product – sans the media circus – is Fuel Cell Energy, Inc., a small firm based in Danbury, Connecticut that went public in 1992 and has over 60 fuel-cell installations worldwide at companies ranging from Pepperidge Farm to Westin Hotels. Like Bloom, it also hasn’t figured out how to make money, losing $71 million last year on revenues of $88 million.


The stakes are high not only for Bloom, but also for Kleiner, Perkins, which staked its post-dotcom future on renewable energy and is looking for a monster hit. Bloom was actually the VC firm’s first foray into green technology, and Sridhar says he is the evangelist who opened the company’s eyes to its huge potential. “With this concept we can change the world,” Sridhar says he told the Kleiner partners. “So it was a very big leap of faith on their part.”

Sridhar stresses that he never promised immediate results – unlike Internet startups, a fuel-cell company is very capital intensive and requires a long gestation. “I told them in 2002, it will take roughly eight years to have a commercial product,” he says. “So we are on schedule. I said you are used to investing tens of millions of dollars before reaping the benefits. This is going to be hundreds of millions of dollars before you see the benefit.”

It took three years of development to produce the first in-house version of the Bloom box, and in 2006 the company shipped its first unit to be tested at the University of Tennessee under a contract with the U.S. Department of Energy. After two years of testing, the company shipped the first Bloom boxes to corporate customers in July of 2008 – twenty Fortune 100 companies in all.

So why is Sridhar going public with his product  now? Turns out it wasn’t his idea – his customers are forcing him to show his hand. “They are pushing,” he admits. “They are saying if you’re not going to say anything we’re going to go out and say we’re doing this.”

The reason these companies are so anxious to go public? It’s great PR – they want to let the world know how green they are. “The young people they are trying to recruit into these organizations are really asking questions in the interview process like, ‘How green are you?’ ” Sridhar says. “ ‘How sustainable are you?’ ”

Grose says even if a company like Google ends up spending more on energy by using the Bloom boxes, the positive publicity will more than make up for it. “Google likes to present itself as a green company for recruiting and burnishing its global brand,” he says. “Even if it loses money for awhile, it’s still a very good thing to do.”

So Sridhar is finally opening the door and sending his baby out into the world. Will it be able to stand up on its own? Stay tuned.

Friday, January 22, 2010

Variable Truths On Wind







We revisit this particular debate.  At present, enlarging connectivity is a best strategy with the current state of the technology.  However, I think that industrial grade energy storage and electric car storage is almost upon us.  Once that is added to the mix, this issue simply goes away.

 

A previous post also noted that the advent or cheap solar power nicely compliments both the wind power profile and consumer demand.  Again adding storage makes all problems go away.

 

It is still impressive that the mega build out in Europe has been so successively integrated into their power grid and this makes waiting for the pending fixes to come on stream completely unnecessary.

 

Wind is working, and solar is now cheap enough to also compete directly.  Since neither requires any fuel whatsoever to operate, they will necessarily dominate the power grid needed for the electrification of transport.  It will always be cheaper to have local production to support local demand.

 

And no one objects to a windmill storing up power for his and his neighbors’ cars.

 

Variable truths on wind

 

http://environmentalresearchweb.org/blog/2010/01/variable-truths-on-wind.html


The debate over how to deal with the variable energy output from wind turbines continues to rumble on. Some say that, when wind availability is low, there will be a need for extensive back up from conventional plant to maintain grid reliability. However, this backup may already exist: we have a lot of gas-fired capacity, much of which is used regularly, on a daily basis, to balance variations in conventional supply and in demand. Balancing wind variations means this will just have to be used a few times more often each year, adding a small cost penalty and undermining the carbon savings from using wind very slightly. But some say we will need much more that that. A report from Parsons Brinckerhoff (PB) claims that “the current mix of generating plant will be unable to ensure reliable electricity supply with significantly more than 10 GW of wind capacity. For larger wind capacity to be managed successfully, up to 10 GW of fast response generating plant or controllable load will be needed to balance the electricity system”.
www.pbpoweringthefuture.com


“Controllable load” includes the idea of having interactive smart grids which can switch off some devices when demand is high or renewable supplies are low.
However even if that option is available, some say that, with more wind on the grid, to meet peak demand, we will still need more backup plants than we have. By contrast, wind energy consultant David Milborrow claims we have enough, and that some fossil-fired plants can actually be retired when wind capacity is added. That depends on the “capacity credit” of wind – how much of the wind plant capacity can be relied on statistically to meet peak demand. Milborrow puts the capacity credit of wind at around 30% with low levels wind on the grid, falling to 15% at high levels (at say 40% wind on the grid). That indicates how much fossil plant can be replaced. 

PB see it very differently: “A high penetration of intermittent renewable generation drastically reduces the baseload regime, undermining the economic case for more-efficient plant types with lower carbon emissions.”
Milborow admits that balancing wind variations has the effect of reducing the load factor for thermal plant, but says that this only costs ~£2.5/MWh at 20% wind, or ~ £6/MWh at 40%. PB will have none of this: “Very high early penetration of wind generation is likely to have adverse effects on the rest of the generating fleet, undermining the benefits of an increased contribution of renewable electricity.”
PB also seems to slam the door on a possible way out, importing power from continental Europe, the wider footprint then helping to balance variations across a much larger geographical area. It says: “Electricity interconnection with mainland Europe would offer some fast-response capability, but would be unlikely to offer predictable support. Without additional fast-response balancing facilities, significant numbers of UK electricity consumers could regularly experience interruptions or a drop in voltage.”
Addressing the interconnector issue, among others, TradeWind, a European project funded under the EU’s Intelligent Energy-Europe Programme, looked at the maximal and reliable integration of wind power in Trans European power markets. It used European wind power time series to calculate the effect of geographical aggregation on wind’s contribution to generation. And it looked ahead to a very large future programme, with its 2020 Medium scenario involving 200 GW – a 12% pan-EU wind power penetration. It found that aggregating wind energy production from multiple countries strongly increased the capacity credit. www.trade-wind.eu

It also noted that “load” and wind energy are positively correlated – improving the capacity factor – the degree to which energy output matches energy demand. For the 2020 Medium scenario the countries studied showed an average annual wind capacity factor of 23–25 %, rising to 30–40 %, when considering power production during the 100 highest peak load situations – in almost all the cases studied, it was found that wind generation produces more than average during peak load hours.
Given that “the effect of windpower aggregation is the strongest when wind power is shared between all European countries”, cross-EU grid links were seen as vital. If no wind energy is exchanged between European countries, the capacity credit in Europe is 8%, which corresponds to only 16 GW for the assumed 200 GW installed capacity. But since “the wider the countries are geographically distributed, the higher the resulting capacity credit” if Europe is calculated as one wind energy production system and wind energy is distributed across many countries according to individual load profiles, the capacity credit almost doubles to a level of 14%, which it says corresponds to approximately 27 GW of firm power in the system.
Clearly then, with very large wind programmes you do get diminishing returns and need more backup, but it seems that can be offset to some extent by wider interconnectivity – the supergrid idea, linking up renewables sources across the EU.
That is already underway. The UK’s National Grid has agreed with its Norwegian counterpart Statnett to draw up proposals for a £1 bn grid-interconnector grid link-up, to be funded on a 50:50 basis, which could help solve the problem of winds intermittency, given that Norwegian hydro could act as back-up for the UK, in return for electricity from the UK on windy days. As yet no UK landfall site has been indicated, but it could include connection nodes along the route with spurs taking power from offshore wind farms and become the backbone of a new North Sea “supergrid”: the UK and eight other North West EU countries have now agreed to explore interconnector links across the North sea and Irish sea. National Grid said: “Greater interconnection with Europe will be an important tool to help us balance the system with large quantities of variable wind generation in the UK.”