I have seen several reports
that conform to my specific expectations of a stable wormhole sufficient to strongly
suspect that they can be produced and used.
They also represent the only practical way to operate between
stars. Other interesting questions
remain open but I do know where to start when it comes to attempting to make
one and way more important I have an appreciation of what needs to be done to progressively
tae the technology itself. It will
ultimately turn out to be surprisingly simple to work with, not unlike
electrical power. Recall how that
originally took a mere century.
There are also indications
from independent testimony that the MFEV technology used by UFOs may also
handle the generation of a worn hole and directed passage. The worm hole would simply be produced on the
top of the craft and then merely be passed over and under the craft allowing it
to emerge elsewhere. Again I read
technically correct descriptions when no such thing should be possible without
the correct theoretical framework.
So yes, sooner or later and
likely much sooner we will be using wormholes. The artwork is misleading bye the bye.
Will
we ever… travel in wormholes?
By Marcus Woo26 March 2014
Leaping between galaxies through tunnels in space may sound
crazy, but physicists have yet to rule it out. So how could this possibly work,
asks Marcus Woo.
The universe is huge. Travelling at light
speed to the nearest star would take more than four years. Venturing to the
other side of the galaxy? More than 100,000 years. So what's an intrepid space
traveller to do?
One option is a cosmic shortcut called a wormhole,
a tunnel through the fabric of space and time that can connect far-flung
corners of the universe. It’s the chosen route of many fictional space
travellers, including the characters in the upcoming film Interstellar,
directed by Christopher Nolan.
Hopping through a wormhole would be incredibly
difficult, say scientists, but they have yet to rule it out. So, what would it
take in reality, and what exactly is stopping us now?
To picture a wormhole, imagine that the
universe is a two-dimensional sheet. Poke two holes and curve the sheet around
them to form two funnels. Stitch the ends of the funnels together, and you get
a wormhole-like tube (see below).
Manipulating space in this way means you can
jump into one end of a wormhole, travel a short distance, and pop out from the
other end in another galaxy. The mouth of a wormhole also acts as a cosmic
window, allowing you to gaze at the stars on the opposite end of the universe.
That’s the theory anyway. What does the
science say about the feasibility of such travel?
Wormholes naturally emerge from the equations
governing the theory of general relativity, Einstein's revolutionary notion
that describes gravity as the warping of space and time, which forms the fabric
of the universe called spacetime.
Einstein and Nathan Rosen published a paper in
1935 describing these wormholes, eventually dubbed Einstein-Rosen bridges.
These curious objects, though, were found to collapse so quickly that not even
light could zip through them. For space travel, they were useless.
In the 1980s, astronomer Carl Sagan was working
on his novel Contact (the basis for the movie starring Jodie Foster), in which
his heroine travels across the Universe. He sought the help of physicist Kip
Thorne to see if there was a scientifically sound way for his character to make
the journey.
Thorne realised that a wormhole might work
best. But to ensure that the wormhole stayed open, he discovered, you would
need some strange stuff called exotic matter. (Following Sagan's cinematic
legacy, Thorne's ideas also inspired the Interstellar movie.)
Exotic matter is weird because it has negative
energy or negative mass, enabling it to act as a sort of antigravity. If Earth
had negative mass and you were to let go of a ball on the planet’s surface, it
would accelerate up, not
down. And, even more bizarrely, to hit a negative-mass tennis ball, you
wouldn't swing your racket toward it, but away. It's this kind of mind-bending behaviour that allows
exotic matter to prevent a wormhole from collapsing.
Although negative energy sounds weird, the
laws of physics do permit it. In the vacuum of space, some small regions of
spacetime can be filled with negative energy, surrounded by regions of positive
energy. "Think about them like waves of an ocean," explains physicist
Larry Ford of Tufts University, Boston. The troughs of the waves would
represent areas with negative energy while the peaks are areas with positive
energy.
Enough to prop open a wormhole though? Perhaps
not. Physicists like Ford have found rules called quantum energy inequalities
that dictate how much negative energy can be consolidated in one place. If you
collect a lot of negative energy, it can only exist within a tiny space. And,
the supply would only last for a short while. If you want negative energy at
bigger and longer scales, you're limited in how much you can hoard.
A wormhole useful for travelling would have to
be big enough and last long enough to send someone or something through. The
problem is that for such a wormhole, you would need more negative energy than
the rules allow. And even if you could break the rules, you would need an
enormous amount. As a very rough approximation, you would need the energy the
sun produces over 100 million years to make a wormhole about the size of a
grapefruit. No one knows how even an advanced civilisation could access that
much negative energy.
Still, although the physics says traversable
wormholes are improbable, physicists haven't yet proven that they're
impossible. "People are quite confident that quantum inequalities prevent
macroscopic traversable wormholes," says John Friedman, a physicist at the
University of Wisconsin, Milwaukee. "But it's certainly not
airtight."
Some physicists have speculated other ways to
construct traversable wormholes, but almost all of them rely on ideas that lack
any real evidence. "They're really changing the rules of the game in a
fundamental way," Ford says. They employ theories of gravity other than
Einstein's general relativity or strange matter that, while not needing
negative energy, probably don't exist. Or, they depend on elaborate ways of
bending space and time that would be extremely difficult to do in
reality.
Tiny wormholes could also arise from quantum
foam – the sloshing fluctuations of spacetime itself when you zoom in on
sub-atomic scales roughly a thousand quadrillion times smaller than the nucleus
of a hydrogen atom. Since these wormholes would be too minuscule for anything
to squeeze through, you would have to inject some negative energy to blow them
up. But physicists need a yet-to-be-developed theory of quantum gravity to
fully understand what happens at such compact scales, and until they find such
a theory, quantum-foam wormholes also seem unlikely.
"Based on what we know now, it's hard to
see how you would make a traversable wormhole," Ford says. But that won’t
stop physicists continuing to explore whether it could be feasible after all.
For the moment, if you were planning that
interstellar journey, it might be a good idea to bring a good book. It could be
a long ride.
No comments:
Post a Comment