We are starting to see clear progress in
understanding sound based animal communication.
Yet most of what we see suggests that this is mostly limited to warnings
and signaling at a distance. With the
dolphin we see some playfulness as well.
At least it is movement coming after decades of
scant progress.
I also think that our core paradigm is wrong. I now conjecture that with animals we are
dealing with a lot of mind to mind communication while sound is reserved for
distance signaling. If we can properly
prove that, all this work is actually counterproductive. It may be possible to ask them what they mean
with their sounds.
The more interesting problem is the crow. That may well be a working group mind. That needs to be closely studied against the
above conjecture to see if it is creditable.
Dolphin whistle instantly translated by
computer
26 March 2014 by Hal Hodson
Software has performed the
first real-time translation of a dolphin whistle – and better data tools are
giving fresh insights into primate communication too
IT was late August 2013 and Denise Herzing was swimming in the
Caribbean. The dolphin pod she had been tracking for the past 25 years was
playing around her boat. Suddenly, she heard one of them say,
"Sargassum".
"I was like whoa! We have a match. I was stunned," says
Herzing, who is the director of the Wild Dolphin Project. She was wearing a
prototype dolphin translator called Cetacean Hearing and
Telemetry (CHAT) and it had just translated a live dolphin whistle for the first time.
It detected a whistle for sargassum, or seaweed, which she and her
team had invented to use when playing with the dolphin pod. They hoped the
dolphins would adopt the whistles, which are easy to distinguish from their own
natural whistles – and they were not disappointed. When the computer picked up
the sargassum whistle, Herzing heard her own recorded voice saying the word
into her ear.
As well as boosting our understanding of animal behaviour, the
moment hints at the potential for using algorithms to analyse any activity
where information is transmitted – including our daily activities (see "Scripts for life").
"It sounds like a fabulous observation, one you almost have
to resist speculating on. It's provocative," says Michael Coen, a
biostatistician at the University of Wisconsin-Madison.
Herzing is quick to acknowledge potential problems with the
sargassum whistle. It is just one instance and so far hasn't been repeated. Its
audio profile looks different from the whistle they taught the dolphins – it
has the same shape but came in at a higher frequency. Brenda McCowan of the
University of California, Davis, says her experience with dolphin vocalisations
matches that observation.
Thad Starner at the Georgia
Institute of Technology and technical lead on the wearable computer Google Glass, built CHAT for Herzing with a team of graduate students. Starner
and Herzing are using pattern-discovery algorithms, designed to analyse dolphin
whistles and extract meaningful features that a person might miss or not think
to look for. As well as listening out for invented whistles, the team hopes to
start trying to figure out what the dolphins' natural communication means, too.
McCowan says it's an exciting time for the whole field of animal
communication. With better information-processing tools, researchers can
analyse huge data sets of animal behaviour for patterns.
Coen is already doing something like this with white-cheeked
gibbons. Using similar machine-learning techniques to those used by Starner and
McCowan, he has found 27 different fundamental units in gibbon calls.
McCowan, meanwhile, has recently modelled the behaviour of rhesus
macaques at the National Primate Research
Center in California. The
idea is to predict when the macaques would descend into the violent social
unrest known as "cage war" that often leads to the death of the alpha
family.
Her team started collecting data, making 37,000 observations of
key signs of dominance, subordination and affiliation over three years. Among
other things, their analysis showed that cage stability improved if new
young adult males were introduced now and again as they seemed to grow into
"policing" roles. "You had to look at the data," McCowan
says. "It wasn't something a human could see."
Terrence Deacon, an anthropologist and neuroscientist at the
University of California, Berkeley, explains that some pattern of repetition is
a basic requirement when information is transmitted. In other words, if
Herzing's dolphins or McCowan's macaques are exchanging information, if their
behaviour is not just random, meaningless noise, then there must be some
discoverable patterns. Information theory can find out what those pattern are,
which parts of a whistle are important, helping behaviourists figure out what
animals are communicating.
The first results from Starner and Herzing's work on dolphin
communication-processing are due to be presented at the speech and signal
processing conference in Florence, Italy, in May. Last summer's work was cut
short because the team lost the dolphin pod, but they did make some progress.
Starner's algorithms discovered eight different components in a sample of 73
whistles. It's still preliminary, but they were able to match certain strings
of those components with mother-calf interactions, for instance. The work has
let them plan for the coming summer when they want to confirm two-way
communication between humans and dolphins.
Deacon is excited to see if such work can lead to a better
understanding of animal cultures. He suspects much animal communication will
turn out to be basic pointing or signposting rather than more complex language.
But humans often communicate on a basic level too. "I don't see a
fundamental white line that distinguishes us from other animals," he says.
No comments:
Post a Comment