Showing posts with label celluose. Show all posts
Showing posts with label celluose. Show all posts

Thursday, February 4, 2010

E Coli Hydrocarbon Production Engineered






We are finally getting something from the biology boys that is convincing. They have shown it is possible to engineer E coli into a microbe that can break down cellulose into sugars that are then converted directly into hydrocarbons    It is the possibility of been an energetic efficient one step process that makes it all promising.

It is still early days but the promise is now clear.  Organic waste unsuitable as feed stock for biochar can be transformed directly into fuel oil.  We are a long way from such a blanket solution but we are now going there.

Hydrocarbon fuels will continue to be popular in agriculture even after the personal transportation industry is handled.  It will also continue to be used in heavy transport.  Sometimes you really need the energy density.  Thus a natural market will exist for the production of hydrocarbons by agricultural operations.


Bacteria Transformed into Biofuel Refineries

January 27, 2010


Synthetic biology has allowed scientists to tweak E. coli to produce fuels from sugar and, more sustainably, cellulose

By David Biello   


The bacteria responsible for most cases of food poisoning in the U.S. has been turned into an efficient biological factory to make chemicals, medicines and, now, fuels. Chemical engineer Jay Keasling of the University of California, Berkeley, and his colleagues have manipulated the genetic code of Escherichia coli, a common gut bacteria, so that it can chew up plant-derived sugar to produce diesel and other hydrocarbons, according to results published in the January 28 issue of Nature. (Scientific American is part of Nature Publishing Group.)

"We incorporated genes that enabled production of biodiesel—esters [organic compounds] of fatty acids and ethanol—directly," Keasling explains. "The fuel that is produced by ourE. coli can be used directly as biodiesel. In contrast, fats or oils from plants must be chemically esterified before they can be used."\

Perhaps more importantly, the researchers have also imported genes that allow E. coli to secrete enzymes that break down the tough material that makes up the bulk of plants—cellulose, specifically hemicellulose—and produce the sugar needed to fuel this process. "The organism can produce the fuel from a very inexpensive sugar supply, namely cellulosic biomass," Keasling adds.

The E. coli directly secretes the resulting biodiesel, which then floats to the top of a fermentation vat, so there is neither the necessity for distillation or other purification processes nor the need, as in biodiesel from algae, to break the cell to get the oil out.

This new process for transforming E. coli into a cellulosic biodiesel refinery involves the tools of synthetic biology. For example, Keasling and his team cloned genes from Clostridium stercorarium andBacteroides ovatus—bacteria that thrive in soil and the guts of plant-eating animals, respectively—which produce enzymes that break down cellulose. The team then added an extra bit of genetic code in the form of short amino acid sequences that instruct the altered E. coli cells to secrete the bacterial enzyme, which breaks down the plant cellulose, turning it into sugar; the E. coli in turn transforms that sugar into biodiesel.

The process is perfect for making hydrocarbons with at least 12 carbon atoms in them, ranging from diesel to chemical precursors—and even jet fuel, or kerosene. But it cannot, yet, make shorter chain hydrocarbons like gasoline. "Gasoline tends to contain short-chain hydrocarbons, say C8, with more branches, whereas diesel and jet fuel contain long-chain hydrocarbons with few branches," Keasling notes. "There are other ways to make gasoline. We are working on these technologies, as well."

After all, the U.S. alone burns some 530 billion liters of gasoline a year, compared with just 7.5 billion liters of biodiesel. But Keasling has estimated in the past that a mere 40.5 million hectares of Miscanthus giganteus—a more than three-meter tall Asian grass—chewed up by specially engineered microbes, like the E. coli here, could produce enough fuel to meet all U.S. transportation needs.* That's roughly one quarter of the current amount of land devoted to raising crops in the U.S.

E. coli is the most likely candidate for such work, because it is an extremely well-studied organism as well as a hardy one. "E. coli tolerated the genetic changes quite well," Keasling says. "It was somewhat surprising. Because all organisms require fatty acids for their cell membrane to survive, if you rob them of some fatty acids, they turn up the fatty acid biosynthesis to make up for the depletion."

E. coli "grows fast, three times faster than yeast, 50 times faster than Mycoplasma, 100 times faster than most agricultural microbes," explains geneticist and technology developer George Church at Harvard Medical School, who was not involved in this research. "It can survive in detergents or gasoline that will kill lesser creatures, like us. It's fairly easily manipulated." Plus, E. coli can be turned into a microbial factory for almost anything that is presently manufactured but organic—from electrical conductors to fuel. "If it's organic, then, immediately, it becomes plausible that you can make it with biological systems."

The idea in this case is to produce a batch of biofuel from a single colony through E. coli's natural ability to proliferate and, after producing the fuel, dispose of the E. coli and start anew with a fresh colony, according to Keasling. "This minimizes the mutations that might arise if one continually subcultured the microbe," he says. The idea is also to engineer the new organism, deleting key metabolic pathways, such that it would never survive in the wild in order to prevent escapes with unintended environmental impacts, among other dangers.

But ranging outside of its natural processes, E. coli is not the most efficient producer of biofuel. "We are at about 10 percent of the theoretical maximum yield from sugar," Keasling notes. "We would like to be at 80 to 90 percent to make this commercially viable. Furthermore, we would need a large-scale production process," such as 100,000 liter tanks to allow mass production of microbial fuel.

Nevertheless, several companies, including LS9, which helped with the research, as well as Gevo and Keasling-founded Amyris Biotechnologies, are working on making fuel from microbes a reality at the pump—not just at the beer tap.

*Erratum (1/28/10): This sentence was edited after publication to correct a measurement conversion error in the number of hectares stated.

Thursday, July 23, 2009

Arborial Tires

This discovery is welcome innovation for the tire industry which consumes a huge amount of oil. It still will but here at least we stop using it as merely a filler in the form of carbon block.

I doubt that it will make much difference regarding the cost profile but it certainly continues the transition from over dependence on hydro carbons. The twentieth century was marked by the oil industry aggressively developing feedstock markets for their many byproducts and derivatives. There were always alternatives out there in the form of plant byproducts.

The comfort we can all take from that knowledge is that it is no big trick to totally replace oil as a feedstock. It just has not been overly necessary. It still is not, but it is commercially attractive today and attention is been focused.

This obviously makes a fully plant based tire a plausible option.

Tires Made From Trees

Cellulose fiber has been used for some time as reinforcement in some types of rubber and automotive products, such as belts, hoses and insulation - but never in tires, where the preferred fillers are carbon black and silica. Carbon black, however, is made from increasingly expensive oil, and the processing of silica is energy-intensive. Both products are very dense and reduce the fuel efficiency of automobiles.

by Staff Writers

Corvallis OR (SPX) Jul 22, 2009

http://www.spacemart.com/reports/Tires_Made_From_Trees_999.html

Automobile owners around the world may some day soon be driving on tires that are partly made out of trees - which could cost less, perform better and save on fuel and energy.

Wood science researchers at Oregon State University have made some surprising findings about the potential of microcrystalline cellulose - a product that can be made easily from almost any type of plant fibers - to partially replace silica as a reinforcing filler in the manufacture of rubber tires.

A new study suggests that this approach might decrease the energy required to produce the tire, reduce costs, and better resist heat buildup. Early tests indicate that such products would have comparable traction on cold or wet pavement, be just as strong, and provide even higher fuel efficiency than traditional tires in
hot weather.

"We were surprised at how favorable the results were for the use of this material," said Kaichang Li, an associate professor of wood science and engineering in the OSU College of Forestry, who conducted this research with graduate student Wen Bai.

"This could lead to a new generation of
automotive tire technology, one of the first fundamental changes to come around in a long time," Li said.

Cellulose fiber has been used for some time as reinforcement in some types of rubber and automotive products, such as belts, hoses and insulation - but never in tires, where the preferred fillers are carbon black and silica. Carbon black, however, is made from increasingly expensive oil, and the processing of silica is energy-intensive. Both products are very dense and reduce the fuel efficiency of automobiles.

In the search for new types of reinforcing fillers that are inexpensive, easily available, light and renewable, OSU experts turned to microcrystalline cellulose - a micrometer-sized type of crystalline cellulose with an extremely well-organized structure. It is produced in a low-cost process of acid hydrolysis using nature's most abundant and sustainable natural polymer - cellulose - that comprises about 40-50 percent of wood.

In this study, OSU researchers replaced up to about 12 percent of the silica used in conventional tire manufacture. This decreased the amount of energy needed to compound the rubber composite, improved the heat resistance of the product, and retained tensile strength.

Traction is always a key issue with tire performance, and the study showed that the traction of the new product was comparable to existing rubber tire technology in a wet, rainy environment. However, at high temperatures such as in summer, the partial replacement of silica decreased the rolling resistance of the product, which would improve fuel efficiency of rubber tires made with the new approach.

More research is needed to confirm the long-term durability of tires made with partial replacement of silica, Li said. Further commercial development of this technology by a tire manufacturer could be undertaken at any time, he said. The newest findings were just published in a professional journal, Composites Part A: Applied Science and Manufacturing.

Tire manufacturing, a huge industry, could also provide another market for large amounts of Pacific Northwest natural fibers and the jobs and technology needed to process them

This advance is another in a series of significant discoveries in Li's research program at OSU in recent years. He developed a non-toxic adhesive for production of wood composite panels that has dramatically changed that industry, and in 2007 received a Presidential Green Chemistry Challenge Award at the National Academy of Sciences for his work on new, sustainable and environmentally friendly wood products.

Wednesday, May 27, 2009

New Wood Dissolution Process Replaces Krafting

A new method of gently tearing apart the chemical constituents of wood has been discovered.

The historic krafting process is a potent chemical process that operates at over a hundred degrees Celsius. It is not easy to work with at all.

Again this is early days, but once again, this may lend itself to small farm based operations able to ship byproducts such as the lignins.

Up to now, one was forced to dismiss wood waste as much other than an inconvenient handling problem for silviculture. This may help change all that. The idea of the wood waste entering a vat and then exiting later as a liquor or as a baled paper like product has appeal.

Now we have a way that will allow ease of handling and no caustic chemicals to deal with. If it can be limited to a modest vat for batch handling, then it should be possible to produce a farm friendly system.

Something like this can be also used to create a woodlot management system. Chips can be gathered and processed over the year for their product stream that can subsidize the whole enterprise.

Queen's Scientists Discover Eco-Friendly Wood Dissolution

http://www.biofueldaily.com/reports/Queen_Scientists_Discover_Eco_Friendly_Wood_Dissolution_999.html

http://www.biofueldaily.com/images/cellulose-fibre-art-bg.jpg


by Staff Writers

Belfast, UK (SPX) May 22, 2009

\Scientists at Queen's University Belfast have discovered a new eco-friendly way of dissolving wood using ionic liquids that may help its transformation into popular products such as bio fuels, textiles, clothes and paper.

Dr Hector Rodríguez and Professor Robin Rogers from the University's School of Chemistry and Chemical Engineering worked along with The University of Alabama, Tuscaloosa, AL, to come up with a more cost and energy efficient way of processing wood.

Their solution, which is reported in the journal Green Chemistry, may see a new sustainable future for industry based on bio-renewable resources.

At present wood is broken down mainly by the Kraft pulping process, which originates from the 19th century and uses a wasteful technology relying on polluting chemicals.

The key reason for tolerating this method is that it is very difficult to break down and separate the different elements of wood. Until now any alternatives to the process have presented similar problems.
The Queen's researchers found that chips of both softwood and hardwood dissolved completely in ionic liquid and only mild conditions of temperature and pressure were needed. By controlled addition of water and a water-acetone mixture, the dissolved wood was partially separated into a cellulose-rich material and pure lignin.
This process is much more environmentally-friendly than the current method as it uses less heat and pressure and produces very low toxicity while remaining biodegradable.

Professor Robin Rogers said: "This is a very important discovery because cellulose and lignin have a wide variety of uses. Cellulose can be used to make products such as paper, biofuels, cotton and linen, as well as many other commodity materials and chemicals.

"Lignin can be used to create performance additives in various applications, such as strengthening cars and airplanes with a fraction of the weight of conventional reinforcement materials. It is also a source of other chemicals which are mainly obtained from petroleum-based resources."

Dr Hector Rodríguez said: "The discovery is a significant step towards the development of the biorefinery concept, where biomass is transformed to produce a wide variety of chemicals. Eventually, this may open a door to a truly sustainable chemical industry based on bio-renewable resources."

The approaches that the scientists are considering for the future include the addition of eco-friendly additives to the ionic liquid system or the use of catalysts.

The researchers are hoping to eventually achieve better dissolution under even softer conditions and are also trying to achieve complete separation of the different elements in one single step.

Both teams are also focusing on biomasses which are rich in essential oils and can later be used in processes such as the manufacture of fragrances.

Thursday, March 5, 2009

Xylose Enzyme Discovered

Step by step we are finding ways to convert cellulose into a usable biofuel like ethanol. This company is also attempting to produce a better biofuel that ethanol itself. Their present focus is on biobutanol.

To date most effort, for good reason has gone into simply unraveling cellulose into constituent sugars and lignin. As these are freeing up, it then becomes necessary to process the derivative products. We have already reported on work on lignin and this is one of the resulting sugars from the processing of cellulose..

It does look as if we will establish protocols and pathways to convert cellulose into a desirable biofuel. The magic question then becomes whether we can do it profitably.

The multiple processes and separation steps are somewhat discouraging, particularly when you will also have to fine tune the feedstock. However, uniform feedstocks such as corn stover and cattail waste and bagasse are all excellent sources of renewable feedstocks.


Researcher discovers enzyme to ferment xylose

By Anna Austin

Web exclusive posted Feb. 17, 2009, at 3:45 p.m. CST

http://www.ethanolproducer.com/article.jsp?article_id=5390

Eckhard Boels, cofounder of Swiss biofuel company Butalco gmbH and a professor at Goethe-University in Frankfurt, Germany, has discovered a new enzyme which teaches yeast cells to ferment xylose into ethanol. Xylose is an unused waste sugar in the cellulosic ethanol production process.

According to Boles, one of the major problems with cellulosic ethanol is that when utilizing other parts of plants, which today are considered waste, yeasts are unable to ferment some of the sugars in a majority of the plant material.

Saccharomyces cerevisiae (SC), a yeast commonly used for ethanol production, lacks the ability to ferment some sugars. “Heterologous expression of a xylose isomerase would enable yeast cells to metabolize xylose,” Boles said. “However, many attempts to express a prokaryotic xylose isomerase with high activity in SC have failed so far. We have screened nucleic acid databases for sequences encoding putative xylose isomerases, and finally could clone and successfully express a highly active new kind of xylose isomerase from an anaerobic bacterium in SC.”

The new enzyme was taken from the bacterial organism and inserted into yeast cells that were retrieved from a commercial ethanol plant. “With just a minor effort, we were able to teach the yeast cells how to ferment the xylose into ethanol,” Boles said.

Boles believe the findings may provide an excellent starting point for further improvement of xylose fermentation in industrial yeast strains, and greatly enhance the development of an efficient biomass-to-ethanol fermentation process. His company, Butalco gmbH, is now working to construct yeast strains to convert plant waste materials into biobutanol.

The research was published in the
Applied and Environmental Microbiology journal in February.

Monday, February 16, 2009

Furan for Gasoline?

This first item led me to the related item regarding the work on furan as a fuel. It competes directly with gasoline and relies on cellulose as a feedstock without a painful side trip through a biological intermediary.

It is easy to understand what drives cellulose based biofuel research. There is plenty of it and by its very nature, only termites and odd single cell animals thrive on its food value. Converting waste cellulose to a fuel precursor is a very desirable outcome. That furan is a deliverable fuel with the comparable energy density of gasoline is a welcome option.

No one mentions that the process also produces other important chemicals besides HMF that also must be dealt with. However, been able to throw everything into the chipper and then into a batch brewing process delivering a sizable percentage of HMT is a rather good start. It is something that a farm can master. Even if the resultant fluid is not separated, it is shippable.

So we have a chemical processing protocol that delivers a working fuel and additional chemical feed stocks of significance by a different route than imagined by other efforts with cellulose.

As I have posted many times, we must vacate the oil patch for our transportation fuels. A number of sugar and starch sources can give us a lot of ethanol, but likely not enough to ever avoid rationing. The major byproduct of all these methods happens to be cellulose. Converting cellulose directly into HMF and then to furan is a major break in the right direction. We still will have other byproducts but these are marginal compared to sponging up the sugars and the cellulose.

Process turns raw biomass into biofuel

http://www.biofueldaily.com/reports/Process_turns_raw_biomass_into_biofuel_999.html

by Staff Writers
Madison, Wis. (UPI) Feb 12, 2009

U.S. biochemists say they have developed a two-step chemical process that can convert cellulose in raw biomass into promising biofuels.

University of Wisconsin researchers said the new process is unprecedented in its use of untreated, inedible biomass as the starting material. They said the key to the new process is the first step, in which cellulose is converted into the "platform" chemical 5-hydroxymethylfurfural from which a variety of valuable commodity chemicals can be made.

"Other groups have demonstrated some of the individual steps involved in converting biomass to HMF (5-hydroxymethylfurfural), starting with glucose or fructose," said Professor Ronald Raines, who led the study. "What we did was show how to do the whole process in one step, starting with biomass itself."

Raines and graduate student Joseph Binder said they developed a unique mix of solvents and additives -- for which a patent is pending -- that has an extraordinary capacity to dissolve cellulose. And since cellulose is one of the most abundant organic substances on the planet, it is widely seen as a promising alternative to fossil fuels.

The research is detailed in the Journal of the American Chemical Society.
A search led to this article, not noted at the time because of the use of the feedstocks of glucose and fructose. Switching to cellulose changes all that.

Avantium Engine-Tests Furan-Based Biofuel

Avantium, which spun-off from Shell in 2000, successfully
completed an engine test to demonstrate the potential of its furan-based biofuels, or “furanics.” Furanics are heteroaromatic compounds derived from the chemical intermediate HMF (hydroxymethylfurfural, C6H6O3).

The cost-effective development of HMF and its fuel and chemical derivatives from biomass is of increasing research interest (
earlier post, earlier post), given that the resulting fuels have significant advantages over first-generation biofuels.

For example, 2,5-dimethylfuran, one of the HMF-derived fuels being researched by Professor James Dumesic at the University of Wisconsin, has around a 40% higher energy density than ethanol, a higher boiling point (by 20 K), and is not soluble in water. Ethoxymethylfurfural (EMF, one of Avantium’s furanics examples) has an energy density of 8.7 kWh/L—very close to that of regular gasoline (8.8 kWh/L), nearly as good diesel (9.7 kWh/L) and significantly higher than ethanol (6.1 kWh/L).

Avantium is focused on the development of second generation biofuels and catalytic processes for the efficient production of novel bio fuels and bio-based chemicals. (The company also has a major focus in the pharmaceutical industry.)

By using its catalytic process development platform, Avantium has been able to find new and improved catalytic routes to specific furanics. Specifically, Avantium developed a one-step method for obtaining HMF derivatives in high yields from very hexose or hexose-containing starting materials such as sucrose and glucose.

The engine test. The engine test was performed by Intertek, in Geleen, The Netherlands, an independent test center. Using a Citroën Berlingo with a regular diesel engine, Avantium tested a wide range of blends of Furanics with regular diesel. The test yielded what the company termed positive results for all blends tested. The engine ran smoothly for several hours. Exhaust analysis uncovered a significant reduction of soot (fine particulates). Furanics do not contain any sulfur.

The excellent results of the engine test support the proof of principle of our next generation biofuel, and is an essential milestone for our biofuels development program. The significant reduction of soot in the car exhaust is encouraging, as soot emissions are considered a major disadvantage of using diesel today, because of its adverse environmental and health effects. We are developing a next generation biofuel that has superior fuel properties and process economics compared to existing biofuels. The production process of Furanics has an excellent fit with existing chemical process technology and infrastructure. Ultimately our ambition is to develop biofuels that are competitive with fossil based fuels.

—Tom van Aken, Chief Executive Officer of Avantium

The company plans to undertake an additional, comprehensive engine tests in 2008 to study engine performance and long terms effects of Furanics. Commercialization will also require studies of toxicologic and environmental effects, such as emissions.

Avantium also announced the filing of over a dozen patent applications on the production and use of Furanics as part of the company’s strategy to build an extensive patent portfolio for its biofuels program. In September 2007, the first two key patents were published, that claim amongst others the use of furanics as a biofuel and its production routes from sugars.

Monday, November 10, 2008

Bill Drake on Tobacco as Ethanol Feedsock

Bill Drake posted this recently and he has assembled a detailed report on his website at:

The quoted figures apply to a tightly seeded field without any rows for picking access. The huge tonnages appear to be a result of multiple harvesting with rapid intervening growth.

This produced tonnage likely surpasses that of potential hemp volume and is surely more amenable to later processing.

The sugar and starch content is surprising. What we have is a crop that can produce ethanol easily, be refined for protein and whose cellulose byproduct will be easy to use for additional processing because of the low lignin content. We have already identified cattails for wetland exploitation and now we have tobacco as a crop resource on marginal croplands in particular.
We have already commented on the viability of hemp.

Both these plants suffer from been politically incorrect and proper research and recognition has been hampered accordingly. This will be over come, but it will take time and will lack enthusiastic support for some time.

We only have to look at the strides been made by biochar into media consciousness over the past year and a half since I began talking about it. It is now popping up in strange but very normal places as accepted knowledge.
This had a lot to do with the recent article in National Geographic.

No one s pushing the use of tobacco yet while there is a small effort on promoting hemp.

Corn remains the best biomass producer for pure biochar production, simply because of mass and separate starch production which pays for it. Hemp has value for the fiber, but that negates any value as a biochar source. Tobacco has the same problem and producing a crop purely for biochar is unlikely to ever be popular.

Producing tobacco as a source of feedstock for ethanol production appears to be very competitive. The lack of lignin will make even the cellulose fraction more easily available as an ethanol feedstock.

This is leading to a need to produce ethanol production hardware for operating farm. This will be in the form of digesters and tankage and separation gear scaled to handle the tonnages. One hundred and fifty wet tons per acre from a hundred acres turns into a weekly throughput of three hundred tons. That is a lot of material and storage to accommodate. A small operation could work around twenty acres easily and scale their operation on sixty tons per week.

It is important to do the first stage of production on the farm and sell either brew at the farm gate or an upgraded liquor using membranes if possible. It could even be collected through a pipeline and concentrated at a large processing plant for final finishing.

Posted on: October 5th, 2008 by biomasstobacco

Would you be interested in knowing about a previously uninvestigated biomass energy resource with extraordinary potential well beyond any plant currently being investigated?

I do understand that the claim of a major crop plant that has never been investigated for its bioenergy potential doesn’t make much sense, but after reading my web page, please search the ORNL database or any other bioenergy database you like – you will find not a mention of this incredibly high potential resource.

For your information, this unknown bioenergy resource is ordinary tobacco, grown as biomass. Tobacco grown for biomass is completely different than tobacco grown for consumption, and while biomass tobacco has never been investigated for its energy potential, other than my own work, it may turn out to be the cost-effective, unsubsidized biomass resource that the industry has been seeking for so long.

Here are just a few of the relevant characteristics of this potential biomass game-changer:

1. Because of its vigorous coppicing behavior, multiple harvests of tobacco for biomass per season mean that producers can expect a seasonal biomass yield of between 100-300 Metric Tons/Acre of (150-180 MT/Acre has already been demonstrated in trials at North Carolina State University).

2. The dry weight yield of this tobacco biomass will be 10-20 tons per 100 tons green weight

3. Of this dry weight, approximately 20% will be sugars, or approximately 2-4 tons of sugars per 100 tons of green weight.

4. Another 10% or so will be starches, or about 1-2 tons of starch per 100 tons green weight.

5. About 20% of the dry weight will be mixed proteins, which break down into what is called Fraction 1 and Fraction 2 protein, or between 2-4 tons of pure protein per 100 tons of fresh, green weight. These are HUMAN FOOD-GRADE proteins, and can be recovered after energy is produced from the biomass.

7. Also, since tobacco is about 40% cellulose, dry weight equivalent, 100 tons green weight will yield between 4 & 8 tons of very low lignin, easily fermented or digested cellulose.

8. Finally, this biomass crop can be grown on marginal land unsuitable for food crops, and has a wider geographic range than either corn or sugar cane.

If you would like to read complete details on my proposal to utilize this previously uninvestigated bioresource please visit my non-commercial web page

Best wishes – Bill Drake