3D printing as a manufacturing tool is starting to get real interesting. Imagine making a simple I beam to full size as dense as styrofoam, yet with steel like strenght.
We can massively expand multi headed printing machines to build just anything. now imagine a starship graving yard filled with 3D printer heads inside the Hub drydock on our bicycle wheel Space station
Better yet we can make our hubs using this tech and save a vast amount of lifting expense.
AI designs an ultralight carbon nanomaterial that's as strong as steel
By Abhimanyu Ghoshal
February 21, 2025
https://newatlas.com/materials/ai-ultralight-carbon-nanomaterial/?
A machine learning algorithm was used to optimize nano-architected materials for the first time, resulting in a surprisingly strong yet light material
A machine learning algorithm was used to optimize nano-architected materials for the first time, resulting in a surprisingly strong yet light materialDALL-E
Using machine learning, a team of researchers in Canada has created ultrahigh-strength carbon nanolattices, resulting in a material that's as strong as carbon steel, but only as dense as Styrofoam.
The team noted last month that it was the first time this branch of AI had been used to optimize nano-architected materials. University of Toronto's Peter Serles, one of the authors of the paper describing this work in Advanced Materials, praised the approach, saying, "It didn’t just replicate successful geometries from the training data; it learned from what changes to the shapes worked and what didn’t, enabling it to predict entirely new lattice geometries."
More Stories
The oxide glass beads are fortified with nutrients such as phosphorus, calcium, and potassium
Science
Tiny glass fertilizer beads could keep nutrients in the soil and out of the water
The Space Force's reusable unmanned X-37B plane has already clocked 908 days on a single flight
Space
US Space Force's X-37B space plane snaps a selfie with planet Earth
To quickly recap, nanomaterials are engineered by arranging atoms or molecules in precise patterns, much like constructing structures with extremely tiny LEGO blocks. These materials often exhibit unique properties due to their nanoscale dimensions.
These atoms or molecules are arranged in repeating three-dimensional patterns known as lattices. A lattice consists of regularly spaced points (called lattice points), which define the periodic structure of the material. This ordered arrangement influences the material’s physical, chemical, and electronic properties.
The researchers collaborated with a team in South Korea, and applied what's known as the multi-objective Bayesian optimization machine learning algorithm. Its role was to predict the best possible geometries for enhancing stress distribution and improving the strength-to-weight ratio to arrive at a novel nano-architecture.
Close-ups of the nanomaterial lattic designs from a field emission scanning electron microscope
Close-ups of the nanomaterial lattic designs from a field emission scanning electron microscopeUniversity of Toronto
Next, they used a two-photon polymerization 3D printer to create a precise nanoscale prototype using a high-resolution additive manufacturing technology. The machine they used – a Nanoscribe Photonic Professional GT2 – is said to cost hundreds of thousands of dollars.
This Nanoscribe Photonic Professional GT2 can print nanoscale material prototypes, and it's as expensive as you might expect
This Nanoscribe Photonic Professional GT2 can print nanoscale material prototypes, and it's as expensive as you might expectNanoscribe
The nanolattices they produced withstood five times the amount of stress that titanium can. That resulted in a strong, stiff, yet light material that could potentially find use in aerospace manufacturing applications.
"If you were to replace components made of titanium on a plane with this material, you would be looking at fuel savings of 80 liters per year for every kilogram of material you replace,” Serles noted.
An ultralight carbon nanolattice consisting of 18.75 million lattice cells resting on a bubble
An ultralight carbon nanolattice consisting of 18.75 million lattice cells resting on a bubbleUniversity of Toronto
The team intends to continue its work to develop even stronger and less dense materials in this vein, and also figure out ways to manufacture components with these material designs without breaking the bank.
No comments:
Post a Comment