Showing posts with label wind. Show all posts
Showing posts with label wind. Show all posts

Wednesday, July 22, 2009

Geothermal Declared Most Efficient Alternative


This is an important finding that must shift policy strongly toward geothermal with a vengeance. It was obvious that geothermal combined with a national grid was a natural backbone to North American energy needs. Wind energy could be fed into that same grid as any other source could be. I have been wondering why it has been ignored, but this should end that.

If rapid development is upon us then Nevada is headed for a building boom in power plants that will be mind boggling.

The major advantage of geothermal power is not just the fact that the process is fuel free, it can also be slowed down and ramped up to meet variations in demand and makes it a great partner for wind and solar based systems.

Application of the Reverse Rankin Cycle engine should allow an efficient system without having to dump any process heat back into the environment which is sort of important in Nevada.

Then if we can ever drill deep enough there is both Yellowstone mega volcano and the recently mapped potential Cascadia mega volcano sitting under the Northwest.

Geothermal Energy Most Efficient Renewable Energy Alternative

by Staff WritersNew York NY (SPX) Jul 21, 2009

http://www.energy-daily.com/reports/Geothermal_Energy_Most_Efficient_Renewable_Energy_Alternative_999.html

As the Obama Administration pushed the energy bill through the House, government organizations and corporations are assessing renewable energy alternatives. Which are the most efficient and improving the fastest?

According to a new study from NYU Stern, geothermal and wind energy are more efficient, and are yielding greater returns on the R and D invested in them, than most other renewable energy alternatives.
NYU Stern Professor Melissa Schilling, an expert in strategic management and technology and innovation management, finds that the cost of generating electricity with geothermal or wind energy is a fraction of the cost of solar energy.

More important, the performance of both is improving much more per dollar of R and D invested in them than solar technologies. This is the first study to explore the trajectory of performance improvement of renewable energy alternatives.

She examined data on government R and D investment and technological improvement and found:
+ Geothermal energy is the most efficient renewable energy alternative and is improving the fastest. Wind energy is second.

+ Fossil fuel technologies are no longer improving (in terms of efficiency) much - if at all. These technologies have likely reached their performance limits, though the government still spends far more on them.

+ Geothermal energy could become cheaper than fossil fuels with R and D spending of as little as $3.3 billion.

+ Both geothermal and wind energy technologies have been underfunded by national governments relative to funding for solar technologies, and government funding of fossil fuel technologies might be excessive given their diminishing performance.

Friday, April 10, 2009

Power Grid Backbone

I have been alluding to this issue for a long time and here we have a survey article about the need for an extensive national and continental grid. The customers are always somewhere else than were the power is best produced.
Not only does the grid need to be fully built out but it needs to be robustly built out so that there are multiple routes available to move power around. Everyone sees value in moving power from the Dakotas to Chicago, but it also needs to be linked to Alberta and Denver.

At the same time preparation should also be make for industrial scaled energy storage, since the emergence of viable protocols are eminent.

A combination of storage and low loss transmission will make the system very efficient.

This may be just in time to support the massive increase in demand driven by the replacement of gasoline with electricity in the personal transportation business.

Giving the Power Grid Some Backbone

The U.S. needs a high-voltage transmission system to deliver plentiful energy from wind and sunshine to power-hungry cities. At least one plan has emerged

By
Matthew L. Wald
http://www.sciam.com/article.cfm?id=giving-the-power-grid-some-backbone&sc=DD_20090407

A stiff wind blows year-round in North Dakota. In Arizona the sun beats down virtually every day. The U.S. has vast quantities of renewable electricity sources waiting to be tapped in these regions, but what it does not have there are power lines—big power lines that can carry the bountiful energy to distant cities and industries where it is needed.

The same is true beyond the windswept high plains and the sun-baked Mojave Desert: renewable supply and electricity demand are seldom in the same place, and too often the transmission lines needed to connect them are missing. The disparity exists even in New England, where hundreds of miles of high-tension wires supported by thousands of steel towers run neatly through dense areas of settlement. When Gordon Van Wiele, chief executive of ISO New England—in charge of transmission in the six-state region—unfurls a map of the land there, large ovals show the location of the best wind sites: Vermont near the Quebec border and eastern Maine spilling over into New Brunswick. But sure enough, no transmission lines tran­sect them.

The U.S. has the natural resources, the technology and the capital to make a massive shift to renewable energy, a step that would lower emissions of greenhouse gases and smog-forming pollutants from coal-fired power plants while also freeing up natural gas for better uses. Missing is a high-voltage transmission backbone to make that future a reality. In some places, wind power, still in its infancy, is already running up against the grid’s limits. “Most of the potential for renewable resources tends to be in places where we don’t have robust existing transmission infrastructure,” Van Wiele says. Instead, for decades electric companies have built coal, nuclear, natural gas and oil-fired generators close to customers.

That strategy worked reasonably well until recently, when 28 state governments set “renewable portfolio standards” requiring their utilities to supply a certain portion of their electricity using renewables, such as 20 percent by 2020 or even sooner. But as Kurt E. Yeager, former president of the Electric Power Research Institute in Palo Alto, Calif., points out, such standards “aren’t worth the paper they’re written on until we have a power system, a grid, that is capable of assimilating that intermittent energy without having to build large quantities of backup power, fossil-fueled, to enable it.”

In Colorado the utility that serves most of the state, Xcel Energy, is now building a megawatt of natural gas capacity for every megawatt of wind so that it is ready to come online quickly to provide power when the wind tails off. That plan is a carbon improvement but not really a carbon solution. The U.S. needs a new transmission backbone that crisscrosses the country, knitting together many large wind farms, solar-energy fields, geothermal pools, hydroelectric generators and other alternative sources.

One utility company has already unveiled a grand plan for the U.S., and other experts are charting their own backbone schemes. But whichever one might prevail will require a lot of money and a lot of coordination across what are now independent areas of technological and political control.

Bottlenecks Would Benefit, Too

Even before the emphasis on
climate change, reasons were mounting to remake the grid. Chief among them are bottlenecks that stifle the flow of power.

North America is actually covered by four regional grids (three of which serve the U.S.). The largest is the Eastern Interconnection, an extensive complex of transmission lines that stretches from Halifax to New Orleans, with substations that step down the high-voltage electricity to lower levels so that it can be distributed locally along smaller wires. West of the Rockies is the Western Interconnection, from British Columbia to San Diego and a small slice of Mexico. Texas, in an echo of its history as an independent republic, comprises its own grid, now called the Electric Reliability Council of Texas. And Quebec, with its separatist undercurrent, also has its own grid. The high-voltage transmission systems in the four regions comprise about 200,000 miles of power lines, divided among a staggering 500 owners, that carry current from more than 10,000 power plants run by about 6,000 investor-owned utilities, public power systems and co-ops.

The four interconnections are linked by short, high-voltage lines, but they do not provide nearly enough capacity to move sufficient power back and forth, much less to handle the additional burden of thousands of renewable sources with output that is intermittent and sometimes hard to predict. Transmission lines within the interconnections are similarly inadequate, strained by the ever increasing demand for electricity. As a result, the entire grid is more prone to blackouts.

“The transmission system is being used closer to its limits more of the time than at any time in the past,” says Rick Sergel, president of the North American Electric Reliability Corporation, which sets operating standards for the system in the U.S. and parts of Canada. Restructuring of the electric industry has also created many more dispersed buyers and sellers, but the conduit to connect them has barely changed.

Transmission is not faring well even within the footprint of a single large utility. Take American Electric Power (AEP), which serves a broad swath of the nation’s midsection. Throughout the 1980s a key high-voltage link near the center of its system operated like an occluded artery. The bottleneck ran between two places most electricity users have never heard of: Kanawha, Va., and Matt Funk, W.Va. At times the line hobbled the entire system, limiting transfer of abundant, cheap electricity from dozens of coal plants in Illinois, Indiana, Kentucky and Ohio to the hungry markets of the East Coast, which had to rely instead on local generators fueled by more expensive natural gas or oil.

The line was rated as high as the industry goes—a 765-kilovolt leviathan with towers 13 stories high, straddling a right-of-way 200 feet wide. But it was usually limited to carrying less than half of its capacity because of the grid’s design. The electric system always has to be operated so that no single line failure will start a cascade of failures that would lead to a blackout. If the Kanawha–Matt Funk line tripped out of service at full load, it could send a wave of power flowing to a parallel but smaller line rated at only 345 kilovolts. That line would be knocked out, and a cascade might follow.

The occlusion started in the 1980s, when for a few hours every year limits on the line prevented interregional transfers of power that would have saved consumers money. Instead new power plants had to be built or existing plants that were expensive to run were kept on when, economically speaking, they should have been shut. By 1990 the hours ran into the hundreds, and AEP reached for the obvious cure: it decided to erect a parallel line, also rated at 765 kilovolts.

On paper the project was straightforward. The company already had decades of experience operating about 2,000 miles of such lines. And construction took a modest 30 months. The new line, which cost $306 million, finally entered service in June 2006. But that came after 14 years of work to get the permits from all kinds of jurisdictions that ruled part of the route, including two states and the U.S. Forest Service.

It is even more numbing to consider that in this case the entity that wanted to build the line was the same one that wanted to send power across it. Now consider the more typical situation—in which a power producer is trying to persuade another company to build transmission—and the prospect becomes even more complicated. During the past two decades very little transmission capacity has been built. Seventy percent of the existing high-­voltage system is consequently 25 years old or more, according to the U.S. Department of Energy.

A Grand Plan
The electric system undergirds nearly every aspect of modern life, from water supplies and steel mills to traffic lights and the
Internet. Although we think of it as a national institution, it is virtually a feudal system among those 500 owners. Control of the power flow is also balkanized among dozens of jurisdictions, an artifact of the grid’s history; it grew together from many small systems and local regulators that to this day are not melded

Frustrated by internal complications such as the Kanawha–Matt Funk line, AEP last year teamed up with the DOE to rethink the grid for the whole country. The result—part of the DOE’s exploration of how to get 20 percent of U.S. electricity from wind by 2030—was a plan for a national, high-voltage transmission backbone. The 22,000-mile system would be to electricity what the interstate highway system is to transportation, enabling a different kind of energy economy suited for a carbon-conscious era.

The plan would not extend today’s transmission system, which often operates at no higher than 345 kilovolts. Rather it would be superimposed over it, with various on- and off-ramps. The backbone would move power across the continent at the extreme high-voltage rating: 765 kilovolts, which would reduce typical system losses of 3 to 8 percent to around 1 percent. The higher voltage would also require fewer lines than any lower-voltage option, meaning less real estate for rights-of-way.

To further decrease losses, some long stretches would use direct current, instead of the usual alternating current that most of the system—and virtually all households and businesses—run on. Although direct-current lines are highly efficient, the equipment that converts alternating current into direct current and back again is not, so the advantage accrues on long spans—such as those from the windy high plains and the sunny Southwest. Those spans only make sense if they traverse sparsely populated areas, however. If the line was going from Wyoming to Chicago, notes Michael Heyeck, senior vice president of transmission at AEP, “I’m sure Iowa or other states would want to tap into it.” Otherwise the line becomes like an interstate without an interchange, hardly welcome anyplace.

High-voltage lines of both varieties have long proved reliable. And there is now reason to believe that a national backbone could be effectively controlled. AEP recently opened a state-of-the-art transmission control center in New Albany, Ohio, near Columbus, that could serve as a model for nationwide operation. The center sits far back from a local highway, surrounded by a moat, with an unmarked gatehouse in front. Inside, giant floor-to-ceiling computer-driven displays show all the power lines and electricity flows across AEP’s entire system. The displays can show details down to the level of transformers at individual substations and circuit breakers across thousands of square miles. The wall-size monitors also generate foglike clouds over large parts of the maps of entire states to indicate general voltage trends: white is good, orange is not, and red is worse.
AEP’s primary motivation for the center, through better real-time monitoring of every line, better organization of all the data and better presentation of diagnostics to the operators, is to prevent another great blackout such as the one of August 2003. Back then, a neighboring utility, First Energy, lost track of what was running and what wasn’t, which allowed a cascade to begin. In a few seconds the blackout raced across Ohio, propagated to Detroit, up through Ontario and back down into New York. But beyond preventing such blackouts, the level of sophisticated control the center provides would also make operating a national backbone possible.
Political Muscle Needed
The concept of a national energy grid is not far-fetched. Indeed, the U.S. already has one that is highly successful in moving resources vast distances, notably from the Gulf of Mexico to New York and New England. But it is for natural gas, not electricity. And it exists because in the 1940s Congress created a system of national regulation for natural gas. Electricity was left to be regulated state by state and sometimes town by town.

As a result, says Andrew Karsner, a former assistant secretary of energy for renewables and efficiency, the country has “Btu liquidity” but not “electron liquidity.” Scrapping feudal transmission regulations for similar national rules would require forceful leadership from Washington. The first step, Karsner notes, is making transmission reform a priority. “Stop the blah-blah” dithering among elected officials, he says.

A regulatory lever might already exist. The 2005 Energy Act gave the DOE “backup authority” to approve new power lines over state objections, by designating “national interest electric transmission corridors.” But some utility executives think the department has been too hesitant to use the authority. Bureaucrats at the DOE are moving carefully, because in the two locations they have tried, one in the Northeast and one in the Southwest, they have provoked fierce reaction. In the Northeast case, for example, Senator Robert P. Casey, Jr., a Democrat from Pennsylvania, quickly rounded up 13 other senators to ask for hearings about how the authority was being used. He said the exercise of such power showed “a level of arrogance on the part of the federal government that undermines confidence in government.” Translation: even where the legal authority may exist to erect transmission lines, the political consensus may not.

Another issue, of course, is cost. The DOE’s wind report put the price tag for a national backbone at $60 billion—a staggering sum, at least until various federal bailouts started to come along last autumn after the stock market plummeted. Whether a better grid would be considered an infrastructure investment worthy of stimulus spending by the Obama administration is not clear; the work would not produce legions of jobs and would create economic benefits only slowly.

But even very large investments can be modest compared with the cost of having to use expensive local generation rather than cheaper renewables from remote locations. In Connecticut, for example, Northeast Utilities recently completed a 20-mile line from Bethel to Norwalk that cost $336 million but in its first year saved nearly $150 million. The line will operate for decades. According to the DOE, the national electric bill is about $247 billion a year, meaning that a small percentage drop in costs could finance tens of billions of dollars in investments.

Implementing such broader thinking would require a true national energy strategy, not a state-by-state energy strategy. A similar problem is repeated to varying extents across the globe. Lester Brown, president of the Earth Policy Institute, says the world must replace the 40 percent of its electricity that comes from coal with a like amount from wind, with 1.5 million wind turbines rated at two megawatts each. But transmission, he acknowledges, is a “gnarled-up situation.”

Clearly, a construction of a national transmission system is within America’s capabilities. “The interstate highway system was not designed by individual states and glued together,” Brown points out. “One way or another, if it became important enough, we would do it.”

Note: This article was originally printed with the title, "Giving the Grid Some Backbone".

ABOUT THE AUTHOR(S)
Matthew L. Wald is a reporter at the New York Times. He wrote about a possible renaissance for nuclear power in the previous issue of Scientifc American Earth 3.0

Wednesday, March 25, 2009

Renewable Distributed Energy Generation Markets To Reach 61 Billion Dollars

This study provides hard statistics for the distributed renewable energy market. This is a sector that is not easy to evaluate and measure, so a resource such as this biennial report is invaluable as it reaches out to the industry and acquires the information.

Otherwise we are left to rely on proponent wishful thinking to evaluate such markets and proxies such as manufacturer’s sales.

The solar sector has become, in spite of a not overly favorable cost profile. Direct subsidy and public policy has helped hugely as it must for the introduction of this type of technology.

This tells us that we now have a huge installed base. That base is about to expand radically with the advent of Nanosolar’s panels which will come in at $1.00 per watt, representing a seventy five plus percent drop in cost.

The importance of the present installed base is that all the peripheral tools and components exist, so that a game changer such as Nanosolar needs to merely deliver.

Renewable Distributed Energy Generation Markets To Reach 61 Billion Dollars

by Staff Writers
Boulder CO (SPX) Mar 20, 2009

http://www.solardaily.com/reports/Renewable_Distributed_Energy_Generation_Markets_To_Reach_61_Billion_Dollars_999.html

Global system revenues for sub-utility scale Renewable Distributed Energy Generation (RDEG) grew at a breakneck pace between 2007 and 2008, rising 76% to an estimated $29.9 billion at the end of 2008, according to a new report from Pike Research.
The cleantech market research firm forecasts that the RDEG market will continue strong growth in the coming years, more than doubling in value to $60.6 billion by 2013.
"Renewable distributed energy generation is a sector dominated by small
solar energy installations," says industry analyst David Link.
"
Solar represents approximately 98% of the world market, with small wind power and stationary fuel cells each accounting for about 1%, a mix that we expect to remain constant during the next five years."
In each country where RDEG
technologies have established a foothold, the market is heavily reliant upon government subsidies, most often in the form of feed-in tariffs for solar installations. However, says Link, this reliance will subside in the long term as system installed prices come down, and Pike Research forecasts that these costs will decline at a compound annual rate of -6% between 2008 and 2013.
"Dependence on solar energy subsidies will taper off in Europe during the next 3-5 years," comments Link, "though we expect that horizon to be somewhat further in the U.S., approximately 5-10 years away."
Pike Research's study, "Renewable Distributed Energy Generation", provides a comprehensive overview of the opportunities and challenges associated with deploying RDEG technologies, including solar photovoltaics, small wind, and stationary fuel cells, to meet the world's increasing demand for electricity. The report includes an examination of key market drivers over the coming years, analysis of cost factors for each technology, and detailed market forecasts. An Executive Summary of the report is available for free download on the firm's website.

Here is the link to the exec summary:

http://www.pikeresearch.com/wp-content/uploads/2009/02/rdeg-09-executive-summary.pdf


I have taken the liberty to copy the initial text portion of the summary. The cost of the report is $3500, for those that need it and you well have to register to get the summary in its entirely.

EXECUTIVE SUMMARY

Increasing numbers of countries have committed to reduce greenhouse gas emissions and diversify energy resources to include more renewable sources. The European Union has committed to reduce greenhouse gas emissions by 20% by 2020 compared to 1990 levels, and has even committed to a 30% reduction if global agreement on this target can be reached. Clearly, concerns related to global warming are becoming top of mind for leaders of nations throughout the world.


Meanwhile, the planet has a seemingly insatiable appetite for energy. The world’s electricity generation is expected to increase from 4.2 terawatts (TW) in 1997 to 7 TW by
2030. In addition, the incumbent electricity grid’s centralized power generation model is very inefficient and limited. In most industrialized countries, the overall generation efficiency averages 30-35% by the time electricity reaches the customer and the electricity grid is getting more and more congested. Further, it is estimated that 33% of the global population lives without power today. Extending the electrical grid to reach this customer base is in most cases impractical. Also, with the expanding presence of wireless telecommunications networks to more remote regions of the world, challenges arise as to how to ensure that these networks are properly powered.


One of the ways to answer the challenge of global electricity requirements is with renewable distributed energy generation (RDEG) technologies. RDEG technologies generate power at the point of consumption, avoiding costly and inefficient transmission and distribution. RDEG technologies generate electricity with few if any emissions. They
have the potential to minimize the complications associated with centralized energy sources, giving businesses and consumers more control, agility, and, most importantly, cost savings. However, today the economics of RDEG technologies do not stand on their own. For this reason, governments have stepped in to subsidize their commercial development. Not surprisingly, RDEG technologies are gathering steam in these regions, which tend to be the some of the places with the highest prices for conventional electricity and highest levels of environmental consciousness. Simultaneously, with technological advances and resulting cost reductions, RDEG technologies are generating power at price points that are showing legitimate signs of being competitive with grid- produced electricity. RDEG technologies are comprised of three principal technologies: photovoltaic (PV), small wind, and fuel cells. In breaking down the market, RDEG technologies make up only a fraction of the total electricity generation sources worldwide. In addition, even with impressive growth over the next 20 plus years, the majority of electricity will still be provided by conventional sources such as coal, natural gas, nuclear, and hydroelectric. Of the 4.2 TW of global cumulative electricity generation capacity in 2007, only 4%, or 160 gigawatts (GW), of that total is considered renewable (not counting hydroelectric as renewable). Of the 160 GW of renewable capacity, only 4% is distributed, with the balance being centralized. Even though renewable technologies comprise just 4% of cumulative capacity, they comprise 16% of 168 GW of new capacity additions or approximately 24 GW, and of that only 8% are distributed capacity additions, which is just under 2 GW. Clearly, there would appear to be upside potential for RDEG contribution to the global electricity generation mix.


By far the largest and most important of the three RDEG technologies is distributed PV. The PV industry has experienced rapid growth over the past few years. PV growth has been spearheaded by markets such as Germany, Japan, Spain, and the U.S. Remaining countries in the European Union are starting to pick up strong momentum as well. Emerging markets in India and China show promise in the longer term. Of all the opportunities in PV, the most compelling growth potential lies in decentralized electricity
generation, whether small rooftop or large commercial installations. PV has the advantage of being truly modular, as it can reach cost efficiencies with installations that are just a few kilowatts (kW) to 20 MW or even 200 MW. For the purposes of this report, distributed PV is considered to be those systems less than 20 MW in size, where electricity does not pass through the traditional transmission and distribution system prior to being used. The estimated size of the distributed PV market in 2008 was 3.6 GW, and it is expected to grow to 9.7 GW by 2013, representing a compound annual growth rate (CAGR)% of 22%. This translates into a market with a dollar value of $30B in 2008 that will grow to nearly $60B by 2013, representing a CAGR% of 15%.


Although it is an important part of the solution, small wind is likely to remain a niche technology for the foreseeable future. It is most often used in concert with another energy
source, such as PV, diesel generation, or battery backup power. With the exception of the
U.S. and U.K., small wind has not benefited from strong government subsidies or other support, and even the programs in those countries have been lacking in comparison to what has been extended to PV or large wind installations. However, a surge in demand for small wind in the U.S. is likely as a result of the recently enacted 30% uncapped dollar for dollar tax credit. The estimated size of the small wind market in 2008 was 38 MW, and it is expected to grow to 115 MW by 2013, representing a CAGR% of 25%. This translates into a market with a dollar value of $165M in 2008 that will grow to nearly $412M by 2013, representing a CAGR% of 20%.


Stationary fuel cells offer enormous long-term potential. They offer a clean, efficient source of electricity and range in size from 1 kW up to 10 MW or more. With reformer technology, fuel cells are able to tap into established or accessible sources of fuels such as natural gas, and they can run off of various other fuels including biofuels and gases that are by-products of adjacent industrial processes. With cogeneration or combined heat and power, efficiencies improve dramatically from 40–50% up to as high as 85%. However, cost issues make the technologies’ long-term potential difficult to predict. In order for costs to come down, volumes will have to increase. However, in order for volumes to materialize, costs will need to be reduced substantially. Without uniform government subsidy programs, it is unclear if or when that tipping point may occur. The estimated size of the fuel cell market in 2008 was 38 MW, and it is expected to grow to 219 MW by 2013, representing a CAGR% of 33%. This translates into a market with a dollar value of $242M in 2008 that will grow to nearly $716M by 2013, representing a CAGR% of 24%.