Tuesday, December 8, 2009

Star Ships

This is fairly decent discussion on the present thoughts of science on interstellar transits.  My own thoughts on the issue I will now outline.


Firstly, local movement will be conducted through the magnetic exclusion vessels or arks that take advantage of the persuasive magnetic field throughout the solar system.  These vessels will be powered by fusion devices and move by generating directed magnetic fields.  This was discussed and written up in my article ‘Reverse Engineering an UFO’.


The problem of course is that these craft are Newtonic and will usually travel under acceleration of one gravity.   That is ample to completely explore the solar system, but is immediately annoying if we wish to go further.  Now we need a craft able to cross light years and retain the ability to return and communicate simultaneously if possible.


A lot has been said regarding our options but most suggestions are simply science fiction and should stay there.


Yet the one option that intrigues because it not excluded explicitly by the mathematics of a three manifold is the well labeled worm hole.  Effectively, two points in space are simply connected and local curvature is adjusted to create a worm hole for objects passing through.  Time has not changed, and we are not adjusting the content of the universe in any manner.  Their nature suggests that they need to be created well away from the local curvature of a solar system.


In the best of all imagined worlds, it would be nice to create such a worm hole from one end, then pull the enlarged worm hole around one’s craft and emerge on the other side of a collapsing wormhole in another star system.  No time duration would be experienced.  Such a device should work well with the expected configuration of a magnetic exclusion vessel.


Therefore a putative starship can travel from the edge of one solar system to the edge of another without any logistical problems caused by long duration voyaging.  Once arrived, it can immediately use its magnetic bottle to travel at one G in system to explore.  That is a pretty good starship, particularly if it is built to be a large transport something like the original Ark of biblical telling (see related posts – this has nothing to do with religious interpretation).


The existence of wormholes is an important question in physics not yet addressed, but as you can see, an important one that determines if we explore the universe or ever build starships.  I do not expect an alternative to emerge and the wormhole is also an elegant solution to faster than light travel.


November 30.2009

Technology for Starships, Closer Stars and Bigger Civilization

Yes, I think human interstellar exploration (and yes, maybe even colonization) might be possible, after a fashion. But to get there, we're going to have to master at least two entire technological fields that don't yet exist, even before we start trying to blast compact disc sized machines up to relativistic velocities. And that's without considering the difficulty of how to cram an industrial infrastructure capable of building more of itself, of a machine capable of surviving in deep space — the equivalent of those 300,000 NASA technicians and engineers — into the aforementioned CD-sized machine ... 

If we succeed in doing it, it's going to look nothing like the Starship Enterprise. Or even New Horizons. The whole reference frame we instinctively assume when we hear the word "ship" is just so wrong it's beyond wrong-ness.

(There's an alternative to shipping around uploads via laser that merits investigation: if we can do uploading, and if we can make memory diamond — which would seem to be a reasonable expectation of a mature machine-phase nanotechnology — then the 80g payload of the reference starwisp ought to be sufficient to carry about 2 x 10^24 bits, which corresponds to 20,000 stored uploads per "passenger ship". This might well be energetically cheaper than using a laser to transmit uploads, giving us an unexpected long-haul corollary to Tanenbaum's law.)

Stars and Other Solar Systems Could be Closer Than We Currently Think

Relying heavily on data from the Jet Propulsion Laboratory-based Spitzer space telescope, astronomers for the first time have observed "baby" brown dwarfs in the earliest stages of formation. 

Brown dwarfs are dim celestial objects that seem to be neither fish nor fowl. But it turns out they begin life more like stars than planets, according to a recent paper by a team based at the Centro de Astrobiologia in Madrid. 

Astronomers thought that brown dwarfs had to be part of the process of star formation, but the newest images suggest that brown dwarfs can be formed through a completely independent process. Like stars, they are formed through gravitational collapse. 

Brown dwarfs lack the signature feature of stars: they can't convert hydrogen into helium through nuclear fusion. They are too small and too cool to ignite nuclear fusion

Even without Brown Dwarf systems there are large planetoids in the Oort comet cloud and in the Kuiper belt. Fusion powered ships and colonies could be set up throughout the Kuiper belt and Oort comet cloud. 

Winterberg's advanced deuterium rocket was designed specifically to leverage the common deuterium resources that are available all over space (our solar system and other solar systems). Comets, asteroids and planets are deuterium gas stations for fusion space ships.

Relatively Near Term Interstellar Enabling Space Technology 

Where does the kinetic energy of a Mach-drive vehicle come from?" 

Simple, it's the cosmological gravity/inertia or gravinertial field created by the rest of the mass/energy in the universe. This idea is at the heart of Mach's principle as stated by Ernst mach in the late 1800s. In other words when an M-E drive accelerates itself and anything attached to it, the momentum and energy books for this acceleration step are balanced by subtracting the equivalent energy from this cosmological gravinertial field, which IMO, simultaneously lowers the overall temperature of the causally connected universe. So the Mach drive is just an electric motor that has replaced the driving electric and magnetic fields with the gravinertial field as the intermediating agent.

Winterberg's design to obtain a high thrust with a high specific impulse, uses propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The design could have exhaust that is 6.3% of the speed of light. A multi-stage fusion rocket could achieve 20% of the speed of light with exhaust at that speed.

There are several near term nuclear fusion candidates for more energy production and for space travel.

100 Years of growth at the Above Mentioned Growth Rates

3%                 18.7 times larger
4%                 48 times larger
5%                125 times larger 
10%             12528 times larger  (China level growth rates of the last 35 years)
20%        69 million times larger  (Fast growing company or mutual fund)
30%       191 billion times larger
50%  271,000 trillion times larger

At the sustained levels of 20%, 30% and 50% annual growth the civilization would progress to and exceed Kardashev Level 2, capturing and using all of the energy (or the equivalent) energy of the Sun. 

The Risk of Superweapons

I think there will be a need to be in spaceships and to be highly mobile most of the time. This would be a precaution against advanced super weapons. I think future technology will make it relatively easy to blow up a star. Powerful kinetic energy weapons will also provide a stronger offense than defence (if you can fly around a solar system willy-nilly in millions of interplanetary ships and can get up to 10% or even 1% of light speed easily then there is a lot of kinetic energy). Therefore, it will be safer to live in spaceships when there is advanced technology all over (common and cheap nuclear fusion, molecular nanotech etc...). Space colonies without propulsion is fine if you knew with certainty that things would be peaceful, but even if your civilization is peaceful you do not know about unknown neighbors or about internal radicals. 

(Some ideas that I have seen about novaing a star - a sufficiently large gamma ray laser or anything else that could cause unusual hot spots in a star that disrupt the mechanics inside in a way that cause it to nova.)

Defences will improve. A more near term example, is a suggestion that I have for re-inventing civil defense against nuclear weapons on earth. However, even if you can make something able withstand powerful forces, the offensive weapons will improve too and you might need to run away quickly and advanced civilizations would be prudent to maintain that ability.

No comments: