It is not my favorite way of CO2 disposal, but it is cheap and quick. I would far sooner see the same CO2 sequestered by the expedient of subsidizing the production of biochar worldwide because that process manufactures wealth that could also be shared by the folks doing the sequestering.
In any event, we can see that point sources of massive CO2 production can presumably compress and separate the CO2 into a pumpable product that can be injected into the ground. The trouble is, is that we produce only a little CO2 so conveniently. House hold heating and automotive use will always need to dump into the atmosphere.
It also entails a parallel pipeline type gathering system mirroring the distribution system. This will occur in only special cases. In the case described in the article it is a case of reservoir CO2 been separated and been reinjected. That is good practice but is certainly a special case.
Atmospheric CO2 vastly exceeds these types of cases and will need to be offset by methods that directly gather it back from the atmosphere. Converting corn stover into biochar is one neat way to do this,
April 8, 2009
Storing the Carbon in Fossil Fuels Where It Came from: Deep Underground
Burying greenhouse gas may be the only way to avoid a climate change catastrophe
By David Biello
http://www.sciam.com/article.cfm?id=storing-fossil-fuel-carbon-deep-underground&sc=DD_20090409
Editor's Note: This is the third in a series of five features on carbon capture and storage, running daily from April 6 to April 10, 2009.
For more than a decade, Norwegian oil company Statoil Hydro has been stripping climate change–causing carbon dioxide (CO2) from natural gas in its Sleipner West field and burying it beneath the seabed rather than venting it into the atmosphere.
The company estimates that since 1996 it has stored more than 10 million-plus metric tons of CO2 some 3,300 feet (1,000 meters) down in the sandstone formation from which it came—and all of it has stayed put, which means storage may be the simplest part of the carbon capture and storage (CCS) challenge.
The basics of carbon dioxide storage are simple: the same Utsira sandstone formation that has stored the natural gas for millions of years can serve to trap the CO2, explains Olav Kaarstad, CCS adviser at Statoil. An 800-foot (250-meter) thick band of sandstone—porous, crumbly rock that traps the gas in the minute spaces between its particles—is covered by relatively impermeable 650-foot (200-meter) thick layer of shale and mudstone (think: hardened clay). "We aren't really much worried about the integrity of the seal and whether the CO2 will stay down there over many hundreds of years," Kaarstad says.
The company monitors its storage through periodic seismic testing, a process that is not unlike a sonogram through the earth, says hydrologist Sally Benson, director of the global climate and energy project at Stanford University. That monitoring indicates that between 1996 and this past March, the liquid CO2 has spread to occupy some three square kilometers, just 0.0001 percent of the area available for such storage.
"We're not going into a salt cavern, we're not going into an underground river. We're going into microscopic holes," explains geologist Susan Hovorka of the University of Texas at Austin, who has worked on pilot projects in the U.S. "Add it up and it's a large volume" of storage space.
How large? The U.S. Department of Energy (DoE) estimates that the U.S. alone has storage available for 3,911 billion metric tons of CO2 in the form of geologic reservoirs of permeable sandstones or deep saline aquifers, according to a 2008 DoE atlas. These reservoirs are more than enough for the 3.2 billion metric tons of CO2 emitted every year by the roughly 1,700 large industrial sources in the country. Most of that storage is near where the majority of coal in the U.S. is burned: the Midwest, Southeast and West. "There are at least 100 years of CO2 sequestration capacity and probably significantly more," Benson says.
According to the U.N. Intergovernmental Panel on
Encouraged by the success of the
And since 2005, oil giant BP and its partners (including Statoil) in the
BP uses a variety of techniques, including satellite monitoring, to observe the impact of the CO2 storage (and natural gas removal). Whereas some areas sank by roughly 0.24 inch (six millimeters) as natural gas was extracted, near the CO2 injection wells the land rose by some 0.39 inch (10 millimeters), according to Gardiner Hill, manager of technology and engineering for CCS at BP's alternative energy arm.
"The gas has been down there about 20 million years so we know [the reservoir] has integrity," he says. The DoE's
BP and Statoil are not doing these CCS projects for charity, of course. A Norwegian government tax on carbon of roughly $50 per metric ton inspired the
Both Statoil and BP foresee more money-making CO2 storage opportunities. Hill notes that if CCS is deployed on a very large scale, society will need the expertise of the oil industry—its "100 years of understanding the subsurface," he says. "We would expect the experience we are building through this to position BP to take advantage of any future business."
"My one prediction is that this is going to be a very big industry, storing CO2 underground but transporting it, as well," Kaarstad adds. "It's not going to happen overnight, but it will probably be as big as natural gas after a few decades."
No comments:
Post a Comment