Showing posts with label biodiesel. Show all posts
Showing posts with label biodiesel. Show all posts

Tuesday, August 19, 2008

Camelina

This recent item has introduced me to camelina, a flax-like crop that has been around for at least five thousand years but not as a viable source for human consumption. For that it may well have to do through the same product conversion as rape seed oil into canola. It does shape up to be a very promising agricultural plant with a few modern tweaks.

This is a crop that prospers on ten inches of rain and little more. There are plenty of prospective lands that can work this crop and little else very successfully. It will be a great transition land crop were folks are been squeezed out of farming by Mother Nature. Think in particular of the buffalo commons of the Great Plains that should never have been broken and are now reaching the end of the aquifers.

At this point the oil is useful only as a fuel source. At least we now have a market for it in the form it is in. I suspect that it will take little to convert it into high quality edible oil that will be easily marketed. It has not been done yet and will take years. Canola had the same problem.

More promising is the immediate meal market for the remaining product. This means that there are minimal waste materials although little is said of the straw except to note that it is clearly minimal from the pictures. I do not have a per acre yield figure as yet either, but assume it approaches that of flax and rape.

In practice, the amounts produced will help the fuel situation but it is unlikely to be more than a fraction of the supply system. I would be happy if it just displaced agricultural usage of fossil fuels as a good first step.

Without question, we are transitioning over to sustainable transportation fuels. It is also obvious that brewing up sugars using algae is the easiest and cheapest way to get there. Biodiesel promises to be an important fuel also because it also can be produced cheaply as a byproduct of algae production and integrated directly into the transportation system. Camelina looks like a good feedstock for this industry now and ultimately as a food product at a later stage. It is certainly a better choice than canola and soy and grows on lands that are poor choices for either.

I am also assuming that haulage using pure electrical systems will remain for a long time only practical for short haul applications. Do not count on it!


Camelina looks to be best crop for biodiesel production

By DALE HILDEBRANT, Farm & Ranch Guide

Friday, August 15, 2008 11:05 AM CDT

GRAND FORKS, N.D. - When considering biodiesel production, camelina appears to be the Cinderella crop, according to information presented at the recent Bio-Mass '08 Technical Workshop in Grand Forks.
In recent months biodiesel production has decreased in the U.S. because of high prices for soybean and canola oil, the two main oils currently used in biodiesel processing, since the oil from both of these seeds is in high demand in the food industry.

At the present time, about 90 percent of the oil used in biodiesel is soy oil and the other 10 percent is canola oil. But the biodiesel production capacity of the U.S., which is 2.5 billion gallons per year, isn't being fully utilized with production last year of only 500 million gallons.

However, Duane Johnson the vice president for agricultural development at Great Plains Oil and Exploration in Big Fork, Mont., thinks camelina, which is sometimes called “false flax” could return profit to the bio-diesel industry and thus spur further growth.

For example, at the current market prices, soybean oil feedstock costs $5.25 a gallon and the feedstock price is about 80 percent of the final product cost, making the final cost of a gallon of biodiesel approximately $6.60, which is a figure well above the current price of diesel fuel.

Johnson also noted that converting good grade vegetable oil such as soybean and canola oil is adding to the backlash over food versus fuel, a debate that is currently taking place world-wide. Since camelina is industrial oil, not food grade oil, using it as a feedstock for bio-diesel would lessen that argument.

Using figures prepared by various agencies back in 2003, Johnson provided the following comparison for using oil crops grown in North Dakota for biodiesel. Even though the growing costs per acre and the cost per gallon of the oil are considerably higher, the following data provides a good comparison between the various oil crops in regards to bio-diesel production.

Raising camelina could also be an economic plus for farmers in the more arid areas of the northern Great Plains.

Alice Pilgeram has been working with camelina research for the past several years at Montana State University and claims the crop can provide growers with a high value crop with relatively low input costs. Production acreage in Montana has increased from just 450 acres in 2004 to between 20,000 to 40,000 acres planted this year.

Several other states, including North Dakota, are currently raising camelina and looking at expanding acreage in the future.

When it comes to fuel production, biodiesel is the most efficient form of alternative fuels, according to Johnson. In terms of gasoline and diesel fuel production, for each calorie expended in the extraction and manufacture of these products we recover 0.8 calories of energy. Ethanol production returns 1.1 calories for each calorie expended, but for biodiesel, for each calorie expended 3.5 to 5.2 calories of energy are recovered.

And, camelina is a superior oil when it come to biodiesel. The oil contains a high amount of linolenic fatty acid, which usually leads to a short oil life before it turns rancid. However, the camelina oil also contains a high level of vitamin E that serves as an anti-oxidant and extends the oil's shelf life.

The high linolenic content is important to biodiesel production, since it gives the product a pour point of around -15 degrees Fahrenheit, which is considerably lower than the other oils offer and is important for users in this region of the country.

Pilgeram also noted that at least five biodiesel companies in Montana will be utilitzing camelina oil in 2008.

Agronomically, camelina is an ideal crop for this region, since it produces well with about 10 inches of rain and requires a low rate of fertilization and pesticide use, and does well on marginal land, Johnson explained.

“We can get maximum yield with up to 10 inches of rainfall,” he said. “After that we start having disease problems.”

Johnson claims the biodiesel industry needs to look to a new generation of feedstocks if it is going to be successful.

“The future of biodiesel is going to be what happens in the next generation,” he said. “Right now all of the oilseeds that we use to make biodiesel, whether it be soybeans, sunflower, canola or mustard, are competing against a world food market. We need to start looking at non-food crops, or the next generation of crops, for biodiesel production.”

These next generation crops should be lower in cost, because they aren't competing for food use. These sources include using algae, where the technology is five to 10 years away, the tropical plant jatropha, which is three to seven years away, and camelina, where the technology is here now.

Camelina has one more advantage - a meal by-product that can be successfully used in beef, dairy, poultry and fish rations. Cold-pressed camelina meal contains a residual oil of 8 to 11 percent and this oil contains 34 to 38 percent omega 3 fatty acids and very high levels of vitamin E.

The meal is also an excellent source of protein and is very low in ash content.

Beef feeding trials are currently underway at Montana State University that show feedlot daily rates of gain were higher with a ration containing 3.5 percent camelina meal than rations containing 3.5 and 7.0 percent soybean meal.

It may have been dubbed “false flax” in the past, but many feel there is nothing false about the future of camelina as one of the new sources for biodiesel production.


From Wikipedia we have:

Camelina sativa, usually known in English as gold-of-pleasure or false flax, also occasionally wild flax, linseed dodder, camelina, German sesame, and Siberian oilseed, is a
flowering plant in the family Brassicaceae which includes mustard, cabbage, rapeseed, broccoli, cauliflower, kale, brussels sprouts. It is native to Northern Europe and to Central Asian areas, but has been introduced to North America, possibly as a weed in flax.

It has been traditionally cultivated as an
oilseed crop to produce vegetable oil and animal feed. There is ample archeological evidence to show it has been grown in Europe for at least 3,000 years. The earliest findsites include the Neolithic levels at Auvernier, Switzerland (dated to the second millennium BC), the Chalcolithic level at Pefkakia in Greece (dated to the third millennium BC), and Sucidava-Celei, Romania (circa 2200 BC).[1] During the Bronze age and Iron age it was an important agricultural crop in northern Greece beyond the current range of the olive. [2][3] It apparently continued to be grown at the time of the Roman Empire, although its Greek and Latin names are not known.[4] According to Zohary and Hopf, until the 1940's C. sativa was an important oil crop in eastern and central Europe, and currently has continued to be cultivated in a few parts of Europe for its seed which was used,[1] for example, in oil lamps (until the modern harnessing of natural and propane and electricity) and as an edible oil.

The crop is now being researched due to its exceptionally high levels (up to 45%) of
omega-3 fatty acids, which is uncommon in vegetable sources. Over 50% of the fatty acids in cold pressed Camelina oil are polyunsaturated. The major components are alpha-linolenic acid - C18:3 (omega-3-fatty acid, approx 35-45%) and linoleic acid - C18:2 (omega-6 fatty acid, approx 15-20%). The oil is also very rich in natural antioxidants, such as tocopherols, making this highly stable oil very resistant to oxidation and rancidity. It has 1 - 3% erucic acid. The vitamin E content of camelina oil is approximately 110mg/100g. It is well suited for use as a cooking oil. It has an almond-like flavor and aroma. It may become more commonly known and become an important food oil for the future.

Because of its certain apparent health benefits and its technical stability gold-of-pleasure and camelina oil are being added to the growing list of foods considered as
functional foods. Gold-of-pleasure is also of interest for its very low requirements for tillage and weed control. This could potentially allow vegetable oil to be produced more cheaply than from traditional oil crops, which would be particularly attractive to biodiesel producers looking for a feedstock cheap enough to allow them to compete with petroleum diesel and gasoline. Great Plains - The Camelina Company began research efforts with camelina over 10 years ago. They are currently contracting with growers throughout the U.S. and Canada to grow camelina for biodiesel production. A company in Seattle, Targeted Growth, is also developing camelina.[5]

The subspecies C. sativa subsp. linicola is considered a weed in flax fields. In fact, attempts to separate its seed from flax seeds with a winnowing machine over the years have selected for seeds which are similar in size to flax seeds, an example of Vavilovian mimicry.

Friday, August 15, 2008

Oil Age Ends

This article is yet another encouraging eye opener. Far too much of our knowledge, taught to us with good intentions is often wrong. Here we expand our understanding of the nature of cellulose and also learn of a fantastic production strategy that literally mocks all the other methods been pursued. Those methods would have been still born if this possibility was understood or even guessed at.

This protocol allows a fermenting process like that of alcohol to produce sugars and free cellulose that can also be easily converted to glucose. The production fluid is an obvious feedstock for the production of ethanol.

This is obviously conducive to industrial manufacturing and eliminates most of the whole problem of utilizing the by product of spent algae. This is also early days again and the whole process lends itself to major optimization that will hugely lower the footprint. Their first calculations are back of the envelope worst case scenarios that can be safely ignored. They will get much better.

Most encouraging is the suitability of using saline water for the process. There are surely additional ways of optimizing the system by drawing sea borne organics into the mix. Perhaps while we are at it we can design in a fresh water byproduct system that can support local direct agricultural on arid coastlines. It all takes a bit of imagination but the desert coastlines are locales in which the beginning of a living productive ecosystem is necessary for further movement inland.

We can now expect one step continuous production of a charged fluid that can then be pumped into fermenter to produce ethanol as a second step. The main input will be sunlight and CO2. The output will be ethanol with little wastage and the fluids all been easily recycled. I do not think that it will be possible to make transportation fuel any cheaper. Particularly if they can also add the nitrogen fixing gene to the bug. We can have a run away sugar and cellulose factory working for us on the beach on sea water and sunshine. The other nutrients would come out of the sea water.

We have looked at a lot of promising technology for replacing the fossil fuel business. We now have nanosolar for static power and we have this as the ultimate supply for transportation fuel and just maybe an efficient way to store energy by splitting out hydrogen yesterday. These are surely the three cheapest ways to get there. Nanosolar claims to be already there. The other two will still need a couple of intense years to look commercially viable.

However we look at it and whatever the time it takes to ramp production up and it will not be much, the oil age has really ended with these discoveries.

New Source for Biofuels Discovered by Researchers At The University of Texas at Austin
April 23, 2008

AUSTIN, Texas — A newly created microbe produces cellulose that can be turned into ethanol and other biofuels, report scientists from The University of Texas at Austin who say the microbe could provide a significant portion of the nation's transportation fuel if production can be scaled up.

Along with cellulose, the cyanobacteria developed by Professor
R. Malcolm Brown Jr. and Dr. David Nobles Jr. secrete glucose and sucrose. These simple sugars are the major sources used to produce ethanol.

"The cyanobacterium is potentially a very inexpensive source for sugars to use for ethanol and designer fuels," says Nobles, a research associate in the
Section of Molecular Genetics and Microbiology.

Brown and Nobles say their cyanobacteria can be grown in production facilities on non-agricultural lands using salty water unsuitable for human consumption or crops.

Other key findings include:

The new cyanobacteria use sunlight as an energy source to produce and excrete sugars and cellulose

Glucose, cellulose and sucrose can be continually harvested without harming or destroying the cyanobacteria (harvesting cellulose and sugars from true algae or crops, like corn and sugarcane, requires killing the organisms and using enzymes and mechanical methods to extract the sugars)

Cyanobacteria that can fix atmospheric nitrogen can be grown without petroleum-based fertilizer input
They recently published their research in the journal Cellulose.

Nobles made the new cyanobacteria (also known as blue-green algae) by giving them a set of cellulose-making genes from a non-photosynthetic "vinegar" bacterium, Acetobacter xylinum, well known as a prolific cellulose producer.

The new cyanobacteria produce a relatively pure, gel-like form of cellulose that can be broken down easily into glucose.

"The problem with cellulose harvested from plants is that it's difficult to break down because it's highly crystalline and mixed with lignins [for structure] and other compounds," Nobles says.

He was surprised to discover that the cyanobacteria also secrete large amounts of glucose or sucrose, sugars that can be directly harvested from the organisms.

"The huge expense in making cellulosic ethanol and biofuels is in using enzymes and mechanical methods to break cellulose down," says Nobles. "Using the cyanobacteria escapes these expensive processes."

Sources being used or considered for ethanol production in the United States include switchgrass and wood (cellulose), corn (glucose) and sugarcane (sucrose). True algae are also being developed for biodiesel production.

Brown sees a major benefit in using cyanobacteria to produce ethanol is a reduction in the amount of arable land turned over to fuel production and decreased pressure on forests.

"The pressure is on all these corn farmers to produce corn for non-food sources," says Brown, the Johnson & Johnson Centennial Chair in Plant Cell Biology. "That same demand, for sucrose, is now being put on Brazil to open up more of the Amazon rainforest to produce more sugarcane for our growing energy needs. We don't want to do that. You'll never get the forests back."

Brown and Nobles calculate that the approximate area needed to produce ethanol with corn to fuel all U.S. transportation needs is around 820,000 square miles, an area almost the size of the entire Midwest.

They hypothesize they could produce an equal amount of ethanol using an area half that size with the cyanobacteria based on current levels of productivity in the lab, but they caution that there is a lot of work ahead before cyanobacteria can provide such fuel in the field. Work with laboratory scale photobioreactors has shown the potential for a 17-fold increase in productivity. If this can be achieved in the field and on a large scale, only 3.5 percent of the area growing corn could be used for cyanobacterial biofuels.

Cyanobacteria are just one of many potential solutions for renewable energy, says Brown.

"There will be many avenues to become completely energy independent, and we want to be part of the overall effort," Brown says. "Petroleum is a precious commodity. We should be using it to make useful products, not just burning it and turning it into carbon dioxide."

Brown and Nobles are now researching the best methods to scale up efficient and cost-effective production of cyanobacteria. Two patent applications, 20080085520 and 20080085536, were recently published in the United States Patent and Trade Office.

For more information, contact:
Lee Clippard, College of Natural Sciences, 512-232-0675; Dr. R. Malcolm Brown Jr., 512-471-3364; Dr. David Nobles, 512-471-3364.

Friday, October 19, 2007

Algae production for the feed lot

I quote the following summary from a paper on feeding algae to cattle. The paper is well worth reading in its entirety because they discuss feeding protocols to cattle. The results were very positive and even suggestive.

The possibility of using unicellular algae (Chlorella and Scenedesmus) as feed for cattle has been studied. Mixed algal culture was grown in a shallow polythene-lined pond and gave a recorded daily yield of 95 tonnes of algal suspension (packed cell volume 5-10 ml/litre) or 247 kg dry substances per hectare. The cost was about $1.25 (Tk. 50) per tonne of algal suspension production. Dried algal cells contained 613 g crude protein (N x 6.25) and 155 g fibre per kg DM. In a 120 d feeding trial 8 growing cattle (7 females and 1 male), of indigenous breed with mean initial live weight kg 146"9 kg, were fed ad libitum urea- molasses-straw and 2 kg/d wheat bran as basal diet. The treatments were 0.5 kg/d Til (sesame) oil cake per head in group I and ad libitum algal suspension in group II. The suspension was drunk at 10% of animal live weight. These animals received no other liquid (water).

Inclusion of algal suspension did not improve total metabolizable energy (ME) or crude protein (N x 6.25) intake but increased daily gain, although insignificantly (P > 0.05) from 399 g for the oil cake treatment to 458 g in the algae group. The feed conversion efficiencies were 6.2 and 7.4 g live weight gain per MJ ME intake for the oil cake and algae groups, respectively. Crude fibre digestibility was significantly (P < 0.01) higher in the algae (81.1%) than the oil cake group (76.2%). For the 120 d feeding trial, the estimated net economic loss was $5.0 (Tk. 200)/animal on oil cake while there was a $14.4 (Tk. 576) profit/animal on algae.

This is actually along way down the road in the road in the mastering of algae husbandry. Dry weight algae is a prime animal feedstock on its own. If we successfully select an algae blend that also maximizes the production of biodiesel, we have a very economic protocol for the production of both feed and oil.

At present the best oil production is around ten times the oil production from oilseeds. The potential is ten times that. Of course at the present time I am mixing apples and oranges as these two applications must have some level of conflict which we need to overcome.

What I am reaching for, though is a least effort protocol for the algae production stream. A system that produces oil and feed through a one step process is very attractive to farm operation. You are continuously shipping oil at the farm gate and consuming the pressed algae as cattle feed. The indicated efficiency of the feed aspect means that any oil production is a bonus to the feed lot.

A conversion of the global cattle industry over to algae feed has the additional benefit of releasing huge amounts of acreage from feed grain production.

In fact this revelation will create a huge demand for an algae production protocol on the part of the agricultural industry. The oil aspect and the release of land will be a bonus.

It was also noted that the production rate approached 100 tons of dry product per hectare compared to a previously reported 10 tons per hectare. Comparing either figure to grain production of perhaps a ton per acre is very compelling. A lower oil yield may even be acceptable in this type of regime.

Of course, this requires a nitrogen fertilizer input that is significant but obviously vastly superior to cropland fertilization in which the bulk of the fertilizer is currently lost. and never used.

The idea of having a one acre algae field replacing as much as fifty acres of grain production is very compelling.

Friday, July 27, 2007

Fuel and Algae

We are now coming to grips with the reality of the end of cheap oil and the ultimate rationing and reallocation of oil resources to highest and best usage. If transportation could be shifted onto another protocol, then we will gain hugely by the simple diversion of oil to the petrochemical business. There would be enough supply to last a fully developed global economy a very long time.

This means that it is time to revisit the promise of algae production. First off, certain stains of algae produce a huge amount of biological oil and can be easily stimulated to do even better. It has been calculated that while the best oil seed can produce around 1000 liters per hectare, algae can produce 10,000 liters per hectare. This is both huge and extremely compelling. Obviously a major investment in product development is called for.

It also appears likely that the by product dry or wet can be fairly easily made into a feedstock for ethanol production. And the combination of ethanol and the biological oil is a viable diesel fuel in its own right without even further processing. of course, it will be better to do some form of fractionation to split out higher valued components. It is just not necessary.

At the present, the cheerleaders of this technology are thinking of placing this technology out in the deserts were a few thousand square miles will readily supply all our fuel needs. I doubt that would be a good idea.

The practical solution will be to develop the economic model around a farm gate. After all you require the hands on maintenance and growing expertise that an experienced farmer can provide.

If we imagine a 2 hectare algae growing facility, perhaps using inexpensive vinyl tubes with a three foot diameter to hold the working medium as I have seen demonstrated, then we can model the necessary handling equipment and resources. Fertilizer and nutrients need to be continuously introduced and product will need to be removed at the rate of perhaps 2 tons per month.

That is still quite a little facility. The two tons will need to be squeezed for oils and the byproduct will have to be placed into a fermenting vat for several days. However that two tons is very transportable using the equipment every farmer has available.

The important thing is that this can be completely within the parameters of any working farm and particularly those farms that are under utilizing the land resource because their principal business is growing a chickens (for example). This would interfere very little with the demands of such an operation.

And the gross revenue will be ten times that experienced with any other oil crop. That is very attractive. Even at ten cents a liter earned that is still still double the return on any other oilseed crop.



Thursday, July 5, 2007

Revealing report on Algae project

This provides an excellent review of the promise of algae. The protocol used is also easily removing the other combustion products, which if true is very happy news.

Without question, we need an easier way to generate ethanol than using food or fighting with cellulose. This has the huge additional advantage of been very suitable for power plants and the desert. Converting algae into the three usable streams of oil, ethanol and complex organic waste is an extremely promising first step and is likely very forgiving.




Click here to read this story online:
http://www.csmonitor.com/2006/0111/p01s03-sten.html

Headline: Algae - like a breath mint for smokestacks
Byline: Mark Clayton Staff writer of The Christian Science Monitor
Date: 01/11/2006

BOSTON - Isaac Berzin is a big fan of algae. The tiny, single-celled plant, he says, could transform the world's energy needs and cut global warming.

Overshadowed by a multibillion-dollar push into other "clean-coal" technologies, a handful of tiny companies are racing to create an even cleaner, greener process using the same slimy stuff that thrives in the world's oceans.

Enter Dr. Berzin, a rocket scientist at Massachusetts Institute of Technology. About three years ago, while working on an experiment for growing algae on the International Space Station, he came up with the idea for using it to clean up power-plant exhaust.

If he could find the right strain of algae, he figured he could turn the nation's greenhouse-gas-belching power plants into clean-green generators with an attached algae farm next door.

"This is a big idea," Berzin says, "a really powerful idea."

And one that's taken him to the top - a rooftop. Bolted onto the exhaust stacks of a brick-and-glass 20-megawatt power plant behind MIT's campus are rows of fat, clear tubes, each with green algae soup simmering inside.

Fed a generous helping of CO2-laden emissions, courtesy of the power plant's exhaust stack, the algae grow quickly even in the wan rays of a New England sun. The cleansed exhaust bubbles skyward, but with 40 percent less CO2 (a larger cut than the Kyoto treaty mandates) and another bonus: 86 percent less nitrous oxide.

After the CO2 is soaked up like a sponge, the algae is harvested daily. From that harvest, a combustible vegetable oil is squeezed out: biodiesel for automobiles. Berzin hands a visitor two vials - one with algal biodiesel, a clear, slightly yellowish liquid, the other with the dried green flakes that remained. Even that dried remnant can be further reprocessed to create ethanol, also used for transportation.

Being a good Samaritan on air quality usually costs a bundle. But Berzin's pitch is one hard-nosed utility executives and climate-change skeptics might like: It can make a tidy profit.

"You want to do good for the environment, of course, but we're not forcing people to do it for that reason - and that's the key," says the founder of GreenFuel Technologies, in Cambridge, Mass. "We're showing them how they can help the environment and make money at the same time."

GreenFuel has already garnered $11 million in venture capital funding and is conducting a field trial at a 1,000 megawatt power plant owned by a major southwestern power company. Next year, GreenFuel expects two to seven more such demo projects scaling up to a full pro- duction
system by 2009.

Even though it's early yet, and may be a long shot, "the technology is quite fascinating," says Barry Worthington, executive director of US Energy Association in Washington, which represents electric utilities, government agencies, and the oil and gas industry.

One key is selecting an algae with a high oil density - about 50 percent of its weight. Because this kind of algae also grows so fast, it can produce 15,000 gallons of biodiesel per acre. Just 60 gallons are produced from soybeans, which along with corn are the major
biodiesel crops today.

Greenfuel isn't alone in the algae-to-oil race. Last month, Greenshift Corporation, a Mount Arlington, N.J., technology incubator company, licensed CO2-gobbling algae technology that uses a screen-like algal filter. It was developed by David Bayless, a researcher at Ohio
University.

A prototype is capable of handling 140 cubic meters of flue gas per minute, an amount equal to the exhaust from 50 cars or a 3-megawatt power plant, Greenshift said in a statement.

For his part, Berzin calculates that just one 1,000 megawatt power plant using his system could produce more than 40 million gallons of biodiesel and 50 million gallons of ethanol a year. That would require a 2,000-acre "farm" of algae-filled tubes near the power plant. There are nearly 1,000 power plants nationwide with enough space nearby for a few hundred to a few thousand acres to grow algae and make a good profit, he says.

Energy security advocates like the idea because algae can reduce US dependence on foreign oil. "There's a lot of interest in algae right now," says John Sheehan, who helped lead the National Renewable Energy Laboratory (NREL) research project into using algae on smokestack
emissions until budget cuts ended the program in 1996.

In 1990, Sheehan's NREL program calculated that just 15,000 square miles of desert (the Sonoran desert in California and Arizona is more than eight times that size) could grow enough algae to replace nearly all of the nation's current diesel requirements.

"I've had quite a few phone calls recently about it," says Mr. Sheehan. "This is not an outlandish idea at all."