Showing posts with label algae. Show all posts
Showing posts with label algae. Show all posts

Wednesday, January 23, 2008

20,000,000 Per Day Production Gap Looming

I can understand why almost no one gets it with the approaching perfect storm in the Oil industry.

Just as we find it difficult to understand compound interest, it is difficult to imagine the collapse of an industry built on a declining resource, even when everyone is in it. Grand banks cod was destroyed for that same reason as was the whale oil business. Yet everyone operated with a business as usual stance to the day it ended.

I hate scaring people, and it is clear that the political leadership is tiptoeing around the issue in every way it can. No one wants to say 'hey guys, the crap is going to hit the fan like it never did before'. I am certain that George Bush is hoping to be long gone before the shoe drops. 'just give me eleven more months, lord, so that I don't get blamed for that too!'

When the first oil crisis occurred in 1975 or so, there was no mystery were the oil was going to come from. There were ample supplies in Saudi Arabia for the turning of the tap.

Today there is no tap to turn and the Saudis know that they are now facing decline if it has not already commenced. Yet even they are pretending business is as usual.

No matter. Our current annual production level of 85,000,000 barrels per day is about to decline at around 4,000,000 barrels per day per year for several years. We have to to be ready to open up new production at this level each year to just stand still. Right now we simply cannot do it.

Accelerating current production of established operations simply will not be possible and has never been possible in the oil business. In fact, you maximize production volumes by slowing the actual lifting rate. For sure, that is why the Saudis have already lowered their output levels.

Recall that thirty five years of very high relative oil prices has not halted the decline in US oil production.

Right now the THAI pilot operation in Alberta is ramping up to 100,000 barrels per day as fast as humanly possible. That will take at least two years to commence and about two years to build out. Accelerated permitting can then build out an additional 900,000 barrels over the next three years. So in my most aggressive back of the envelope scenario, THAI can hit 1,000,000 barrels per day by 2012 at the earliest. At the moment we still do not know what a real world depletion and decline curve looks like for the THAI well pairs. We will though by 2012.

However, once that is well underway, it should then be easy to add an additional 1,000,000 barrels per day per year for a long time. It may even be possible to ramp up to 4,000,000 barrels per day per year over the succeeding five years so that by 2017 we are recovering back to current levels of production.

In my most optimistic scenario, which is becoming available to us thanks only to THAI, we will lose about 20,000,000 barrels per day of production and then slowly creep back to current levels by 2018. That is a pretty ugly swing however stated.

And yes, throughout this transition, it will be possible to scramble in resources, including a lot of oil that will also alleviate the pressure.

This scenario suggests that Alberta must achieve production levels of an unbelievable 20 to 30 million barrels per day within the next two decades. This is a billion barrels or so per year. And strangely enough, from what I know of the actual resources, this can be sustained for a thousand years at least although the rest of the world will dry far sooner.

I also suspect that undiscovered mega fields may exist in the remaining valley of the MacKenzie although most folks would rather go to the middle of the Amazon.

In other words it is impossible to understate the importance of the successful pilot test of the THAI system. All the major problems associated with heavy oil disappear, including maximizing recovery. For the record, I have been watching this pilot since before they got the money to do the pilot test, and so far it has succeeded as advertised with only the usual predictable problems. Expect engineers to skimp on sand handling when you don't quite believe that the underlying premise is going to work. The courage to immediately permit a next stage to 100,000 barrels per day is a huge internal vote of confidence that the technology is licked and is truly working.

Let us hope that my optimistic scenario ends up been the global production floor. This still means that the personal automobile is almost going to be banned as that is the only place that we can remove 20,000,000 barrels per day of production. There is no other source until THAI and even replacement technologies kick in.

I personally hate to write posts about the developing economic situation, but shared knowledge is the only way to be able to position yourself in the middle of a pending economic transition crisis. Otherwise one freezes up in the face of rapid changes which rather obviously have already begun.

You need only imagine the post that I would have to write if THAI was not working, particularly since few comprehend the lead times necessary to bring on new technologies like algae oil and methanol at the scale necessary.




Tuesday, January 15, 2008

20 billion Population sustainable

When I started his blog, my central thesis was that the global need to reorganize the way we handled CO2, called for nothing less than the terra forming of the Earth. My central tool was the establishment of a well planned global silviculture support system. This was because agriculture and forest management are close enough that it is possible to establish mutual support.

What our investigation has brought home is that our tool kit is much better than anyone imagined and even more invasive than anyone imagined. And I mean invasive in a good manner. We can often help mother nature to maximize results.

The core economic unit is still the private farm. Preferably the village farm, although the family farm will still be important.

I have discussed the need to tie our civilization more directly to our agricultural roots. This will mean that a farm unit needs to be integrated with a condominium tower containing a couple hundred families with rapid access to the urban job market. This supplies the farm with a ready supply of temporary labor as needed to take advantage of higher yield crops and supply labor intensive maintenance.

A single family can operate a thousand acre $200 gross per grain farm. That same family could just as easily operate a high yielding crop worth several times as much on a fraction of the land. Somewhere in between there is an agricultural coop type system as used for centuries in Europe in which all labor was honored and valuable.

The point that I want to make is that part time labor must be available if we hope to harness the potential that we are describing in these posts. And it has to be welcome labor respecting a person's time and place in life and honoring his input. This problem has been well solved in the past, but has been forgotten in the rush to the family farm and the industrial farm.

Our hypothetical farm unit today can be built around several new virtuous cycles.

1 The terra preta - corn culture builds soils and restores full fertility while permanently sequestering one ton per acre of carbon per year.

2 Woodlot management produces forest products and a steady stream of waste wood chips while building up to 25 to 50 tons of sequestered carbon per year. The wood chips make a good feedstock for methanol production, but not as likely for biochar since it requires grinding.

3 Cattle culture produces a waste stream that may now be diverted into algae production. This will produce an oil byproduct that makes good biodiesel and a solid byproduct that may either be used as cattle feed or used in fermentation or both. That is still a speculation, but something like this seems possible. It would be clearly superior to prior practice which has always been unsatisfactory.

4 Atmospheric water production will open up progressively the earth's arid lands. I say progressively since it is all about growing trees that then dump the moisture back into the atmosphere for reuse. The same rainfall can theoretically water the Sahara desert over and over again. Of course it is not that simple and will require progressive tweaking even when the cost of the technology has become cheaper than needed.

5 Woodlot management that produces economic amounts of forest products and also a viable fuel will progressively convert the wildwood into viable farm units, even in the rainforests. Good management will become possible even while maximizing diversity. Again, the main challenge is to eliminate short term exploitation tenures. And the best way to do that is to do that is to tax the resource through a long term partnership that demands a sustained species mix. It is pretty hard to cut all the oak if you are going to be taxed in perpetuity for those non existent oaks at current market value. Inflation alone will bankrupt such a practitioner eventually.

6 Proper wildlife husbandry is completely feasible and needs only the establishment of proper ownership to bring under effective management.

The main business of mankind is to produce enough food and now, enough fuel through sustainable sources. These protocols make a global population of even 20 billion possible and sustainable.


Thursday, December 20, 2007

Costing the Algae Economy

Dug made the following comments on how little we know as to the operational costs at the moment.

Could you reference your statements with the final costs per storeable gallon of fuel. I notice you make no mention of fertilizer, extraction, separation, filtration and stablization costs and without addressing them - you haven't produced usable or a cost efficient fuel. As we all know, producing algae is the easy part. Also your production units need to referenced with a time unit. i.e. - X gallons/acre/year.

While we all appreciate enthusiasm and optimism, but you might also want to point out, that to date no one has produced one gallon of algae oil that is competitively priced to petroleum sourced diesel fuel. Competitively priced means that OPEC can't drive the would be producers out of business as they have at least twice over the past 40 years.

The truth is, any cost figures that get thrown out now are early days and must be suspect. I prefer to not bandy them about except to use them as magnitude checks. The company's announcement did spell out that their production system (do look at the pictures) supported a annual through put of 276 dry tons per acre that however calculated is very likely accurate.

It was apparent from the visuals and the obvious design parameters that their input costs will compare favorably to those of commercial greenhouse operations. To say more than that at this stage is speculation and misleading at best. The protocols need to be finessed and even the working algae species have to be successfully worked out. I simply do not believe we are anywhere close today nor will we for a long time.

What we have though is an industrial production platform that is obviously scalable and can be operated in reasonable isolation from wild species. Hopefully they do not have to maintain negative atmospheric pressure.

It is also a platform that promises low capital costs for setting up with mass production techniques which is critical as was critical for the expansion of the green house industry.

Of course fertilizer, extraction, separation, filtration and stabilization are critical but are subject to scaling issues and are not to likely to be fully addressed as yet. We all can imagine a rotory filter press hard at work, but there are many options and such a system has to be optimized around a scale choice.

I personally suspect that the key issue will turn out to be the utility of the deoiled byproduct. I simply cannot believe that this will not make a viable cattle feed, but this is a long way from been sorted out. If that works, then this technology can be quickly integrated with feedlot operations and the oil becomes a shippable byproduct of an operation set up already to deal with similar issues.

As in green house operations the nutrients must be provided, but then there is little wastage unlike most open field agriculture. If those same nutrients end up feeding cattle then we have created a viable link in a meritorious system.

Another option for the usage of the algae meal may be fish food for vegetarian fish at least. No one has gone there yet. The real point here is that there is a need for innovative food stocks for all animal husbandry industries as traditional supplies have been inadequate. I may be possible to blend the needs with the production of oil.

I do not want to dive into the economic practices of the oil industry, except to say that conversion to this source is inevitable in the long term, but postponable in the short term by the advent of additional sources of petroleum. The political will must exist to say that we want to be totally independent of petroleum and we are prepared to support an appropriate premium. I suspect that square mile sized algae oil facilities producing in excess of 80,000 tons of bio diesel (around 20,000,000 gallons) is an attractive option to those tired of been whipsawed by a politicized oil supply industry that is no longer truly based in the homeland.

In the meantime, we have a model greenhouse pumping out 256 tons of biomass per acre per year as a threshold. That will require a predictable amount of fertilizer per ton and associated costs. It is a good start. The rest is subject to incremental increases in efficiency by species selection and management. Hopefully the will, the money and the time exists to complete the job.

By the way, no other source of oil will ever be competitive with petroleum on a cost basis. It has already been manufactured and there are many places were it can be lifted for pennies. So that is an unfair question. It is like mining gold in competition with the US mint. The problem is that petroleum imposes huge indirect global economic costs that are how becoming unbearable that can be completely mitigated by transitioning over to algae bio diesel. And with the prospect of cattle feed, I am trying to show that it can be better than that.

This is so far the only 'business plan' that has any reasonable prospect of keeping our oil based civilization working on a sustainable basis as an oil based economy forever. I also suspect that all other alternatives will usually be too little too late.

Wednesday, December 19, 2007

Algae Oil Industry will end Foreign Oil

The one reason that I was so happy to see the recent production protocol for algae and its apparent utility is two fold. Firstly, this is the first clear attempt to creates a system not unlike what is prevalent in greenhouses today. It does not look like a chemist's wet dream. It looks like something that can be produced very cost effectively and that can stand up to some operator abuse even. This is mandatory for any planned industrial farm protocol.

The second reason is a little more subtle. Isolation is achieved and appears to something that can be fully maintained or at least quickly restored. That isolation opens the door to the rest of modern agricultural technique. We can safely breed tame species of algae that allow us to maximize favorable characteristics. This is very important.

Right now, using essentially wild algae, we are producing a believable 33,000 gallons of oil per acre from 276 tons of dry bio mass. The remaining fifty percent fraction that is not oil is not yet addressed as to usage. History has shown us that we will be able to hugely increase that production rate through the selection process. If we can do 33000 gallons now, then 100,000 gallons should be within reach. What is just as important, we can select for a usable profile for the remaining by product.

A high nutrient, high protein feed supplement for the cattle industry would be almost too good to be true. If it is possible, then we can end the use of animal protein for the livestock industry and avoid ever having a repeat of the mad cow disease.

The by product of algae production should be very usable. Recovering nutrients will be rather more difficult once we have mastered the production side.

We then must address the problem of cost. This protocol has a good analogy in the greenhouse industry with the added benefit of likely requiring a very low labor component. Certainly the capital outlay will be roughly similar.

And since everything can be automated, large facilities can be operated with a handful of employees not unlike most huge industrial chemical processes.

We know that normal farmland in a season can produce one ton or so of product and perhaps as much as ten tons of biomass per acre. A green house can do several times better than that by shrinking and duplicating the season.

Algae already can produce 276 tons of dry bio mass per acre per year. If the life cycle can be sped up only then the production of 1000 tons per acre does not seem out of reach. Right now the product is without tangible value and that has to be developed. Here even the niches can help out by underwriting the technology.

These potential yields are extremely compelling and merely need to be monetized. Of course it is too early to make a lot of sense on that as yet, but the volume is now sufficient to secure our transportation fuel future.

Even if the oil industry can crank up enough new oil production to tide us over, the need to transition to a fossil fuel free economy is very real and this solution can be put in place to make the developed world and India and China completely independent of any fuel source not under their control.

We really can tell the Middle East that we do not want their oil any more. And if that means paying $3.00 a gallon for bio diesel while a barrel of Middle Eastern oil fetches $8.00 a barrel, then so be it.

We will underwrite a huge global industry that will employ millions and help feed billions.




Tuesday, December 18, 2007

Algae Production Pilot Plant operational

I am posting this news release by a company that is doing a fine job of tackling the algae oil problem. As you know from earlier posts, we concluded that the only viable replacement for transportation fuel would be biological oil produced from algae. Other sources had no hope of producing enough oil and besides, required the diversion of high quality agricultural land. somehow, we would all use bicycles long before anyone starved to death.

Open pond production of algae can be expected to be ten times more productive of oils than the best oil seed. The question remaining to be answered is: was it possible to develop an economic protocol for industrial style production? This news release goes a long way to answering that question.

They have tackled the first problem of maximizing controlled algae production with the use of racked transparent plastic flow channels that obviously can absorb the ambient light rather well. They have achieved a through put rate in a three month pilot operation that is three times as productive as the open field model.

This at least supplies a threshold and a robust working model that can now be progressively improved upon. And let us not underestimate the difficulties. The best algae blend will likely be uncooperative in working with such a system and will provide plenty of headaches. But I do not see anything that may not be overcome.

We are looking at the building of greenhouses to operate these production facilities and we are also looking to build them in proximity to CO2 producers like power plants. At least at the beginning.

What we have here is a really good start at producing huge amounts of algae with a very low labor and energy input. It would really be wonderful to use the waste heat(hot water) and the CO2 of a coal fired power plant to operate a facility such as this. They are at least the first and best customers.



NEWS RELEASE - VALCENT

December 12, 2007 OTC BB: VCTPF; CUSIP: 918881103

INITIAL DATA FROM THE VERTIGRO FIELD TEST BED PLANT REPORTS AVERAGE PRODUCTION OF 276 TONS OF ALGAE BIO MASS ON A PER ACRE / PER YEAR BASIS

El Paso Texas: The Vertigro Joint Venture has released initial test results from its high density bio mass (algae) field test bed plant located at its research and development facility in El Paso, Texas.

During a 90 day continual production test, algae was being harvested at an average of one gram (dry weight) per liter. This equates to algae bio mass production of 276 tons of algae per acre per year. Achieving the same biomass production rate with an algal species having 50% lipids (oil) content would therefore deliver approximately 33,000 gallons of algae oil per acre per year.

The primary focus of the 90-day continuous production test was determining the robustness of the field test bed. Other secondary tests were also conducted including using different ph levels, C02 levels, fluid temperatures, nutrients, types of algae, and planned system failures. It is important to note that the system has not been optimized for production yields or the best selection of algae species at this time. The next phase of development will include increasing the number of bio reactor units from 30 to 100 and then continuing a number of production tests that may further increase production as well as initiating various extraction tests. The results released today are in keeping with data previously announced from the Joint Venture’s laboratory proof of concept test bed. Subsequently, the joint venture intends to build out a one acre pilot plant with engineer design work underway at this time.

As a comparative, food crops such as soy bean will typically produce some 48 gallons oil per acre per year and palm will produce approximately 630 gallons oil per acre per year. In addition, the Vertigro Bio Reactor System is a closed loop continuous production system that uses little water and may be built on non arable lands. Glen Kertz and Dr. Aga Pinowska, who head the research and development program, commented “This is a major milestone for us as we have demonstrated the robustness of the Bio Mass System with satisfactory production results from a system that has not yet been optimized for algae production, which will become part of the next phase of testing” They also noted “We have learned how to produce a very large algal bio-mass under varying environmental and operating conditions in our continuous process photo bioreactors. We believe these initial results are amongst the best achieved to date, and we are confident we can now increase the productivity.”

“We are extremely pleased with the robustness and performance of the Vertigro technology in sustainably producing commercial quantities of algae biomass,” states Doug Frater, Global Green Solutions CEO. “Over the coming months we will further optimize the technology and demonstrate economic algae production for biofuel feedstock purposes.”

The Vertigo system may be a solution to the renewable energy sector’s quest to create a clean, green process which uses mainly light, water and air to create fuel. The Vertigro technology employs a proprietary highdensity vertical bio-reactor that produces fast growing algae which may yield large volumes of high-grade algae oil. This oil can be refined into a cost-effective, non-polluting diesel biofuel, jet fuel and other applications. The algae derived fuel may be an energy efficient replacement for fossil fuels and can be used in any diesel powered vehicle or machinery. In addition, 90% by weight of the algae is captured carbon dioxide, which is “sequestered” by this process and so contributes significantly to the reduction of greenhouse gasses.

Valcent: OTC BB VCPTF (www.vacent.net), together with Global Green Solutions Inc: OTC BB GGRN (www.globalgreensolutions.com are each 50% partners in the Vertigro Joint Venture that has developed a pilot plant in El Paso which became operational in March 2007 and is the primary research and development site for the Vertigro technology. Valcent’s primary responsibility is research and initial development with Global Green’s responsibilities including final engineering and commercialization of Vertigro. For more information, visit: www.valcent.net

Friday, November 23, 2007

Algae Trial in New Zealand


Hamish Macfarlane has introduced me to a company that he has had involvement with named Aquaflow bionomic corporation out of New Zealand. What these folks have done is to tap municipal sewage settling ponds that are already producing algae for their feedstock.

They do not describe all the details of their process, but it is obvious that their first step has to be to run the algae rich water through a filter press. They are then able to harvest the contained lipids from the concentrated algae. No one is talking about yield which must be quite low since we are dealing with a mix of wild algae at this time.

Since the initial feed stock is sewage, it also suggests that the de-oiled dry mass may be unsuitable for cattle feed. This does beg the question of what to do with the substantial dry mass in any attempt to create a commercial industry.

What is important, is that these sewage settling ponds are nutrient rich and need to be biologically reprocessed before the fluids can be reused in whatever manner. Maximizing algae production while capturing the bio available nutrients is a very good intermediate step that preserves the nutrients.

Separating the algae from the grey water is simple, economic and easy with a rotary filter press, and if that produces a product that can then be used as a feed stock for further processing, we may have an economic basis for doing all this.

This harvesting of an algae feed stock from sewage settling ponds can be maximized and be an important contributor to the bio remediation of the sewage cocktail. The algae will not likely be a collector of toxins that it cannot handle or even break down. This means, that by and large this process separates the sewage feed stock into two separate feed stocks.

Through aeration and stimulation the settled and dissolved components will lose a lot of their reactivity and become usable even as high quality crop dressing. The surplus nutrients will end up been carried away in a living algae biomass that can then be perhaps used in further processing.

So far the New Zealand company has been able to collect the lipid content of a natural blend of wild algae. I suspect that the yield is at best a trivial amount of the total bio mass but will at least establish a threshold. We will discover what percentage of oil is retained regardless of processing energy and input. Anything over that may be deemed as potentially recoverable.

Then the interesting question is whether it is possible to selectively stimulate the growth of superior oil bearing strains, and just as important to keep them in suspension. We know that the most important oil algae species likes to sink to the bottom which is not very good in a sewage settling pond.

A simple fix might be the installation of a secondary pond that is fed by a surface waters only drawn off by a skimming barrier and packing the dissolved nutrients and micro organic particulates. Then the algae can grow out primarily in the secondary pond and be aggressively harvested there with pumps.

In a perfect world, the grey water then exiting the secondary pond would be totally spent with all the nutrients absorbed into the algae byproduct.

This would also allow a stimulation of algae populations to improve oil yields.

The other question is if it will be possible to treat the pressed algae in anyway that could make it fit for cattle feed. There is only so much molasses can do, but if the algae mix can sponge up the unpalatable components during the growing phase, then this becomes a very effective way to produce rich fodder for cattle and the oil yield is not necessarily the most important part of the process.

This is a lot of speculation, but at least someone has a working prototype system to explore the possibilities. We will have to keep watching.

In the meantime others will experiment with a mono culture approach fed by chemical feeds.

I personally like the idea of been able to use a wild algae blend, but must admit that I am not optimistic that economic yields of oil can be achieved that way.


Friday, November 9, 2007

The threee options for global transportation fuel

As should be now clear, mankind has three options capable of supplying transportation fuel similar to what we are used to. That is fuels that derive their energy from the burning of molecular carbon and hydrogen.

As shown yesterday, it appears likely that we can extend the usage of geological hydrocarbons for around a century or so because we are mastering the art of their extraction. This will continue to be cheapest once it is all sorted out over the next twenty years.

The second source is the two stage conversion of wood chips into firstly a bio liquid through fast pyrolysis and then into a usable fuel perhaps through several reforming technologies. Since the first stage is liquid, and the feedstock is sufficient to globally replace oil, the payoff is obvious and the research should succeed.

The third source is algae oil. Research on production is in its infancy and it is still impractical and poorly understood. Did you ever wonder how many centuries it took to master the art of making wine? Same problem. The reward however is a huge leap in productivity on a per acre basis and the ability to preferentially use deserts. And the product will need little processing to use. It is also capable of completely replacing geological oil.

Then it comes down to preferences. The best solution is to successfully harness wood chips, not because of the fuel itself but because of the secondary need to manage woodlands properly worldwide. We truly kill two birds with one stone.

This second goal must also be met if we hope to handle much larger populations. The integration of agriculture, woodland management and the human population is very necessary in order to achieve a fully energy efficient civilization.

The farm and woodland needs access to a community with available surplus labor in order to be able to maximize productivity of the resource. Ultimately that is how we prospered when the only available energy came from our backs.

One reason I totally appreciate the amazing achievement of the Amazonian Indians is the fact that they managed to create terra preta soils with a resultant high population density and a semi urban society using only their backs. If they had had to cut anything, it would never have happened. It simply would have taken too long to both cut material and to build out a proper kiln. Having a crop that could easily be pulled out of the seed bed with its soil contribution made the job possible.

Modern technology allows a small community to have all benefits of the urban world while still integrated with farm and woodland. This was not true ever. Such formal integration must now be planned for and implemented for civilization to achieve maximum energy efficiency while handling much larger populations.

Recall that five condo towers tied to one square kilometer of farm land gives us a population density of around 1000 people per square kilometer. We can all imagine that. Since around 15,000,000 square kilometers are readily available to us for human occupation in some form or the other, it becomes fairly clear that we can accommodate a population of 15 billion without becoming cheek and jowl. The real secret is to plan so energy needs are minimal and self sustaining.

It is all very possible.

As an aside, I have focused on strictly organic solutions to the transportation energy equation. Other options exist but are technically much more challenging and face the natural problem of an inability to integrate at all with the current legacy of gasoline and diesel power plants and engines.

Electrical systems require super batteries that are cheap. This research has been ongoing forever and has not changed anything that matters. And other storage systems ultimately give us the problem of traveling around with a bomb in our fuel tank. Not very likely even though I like a couple of the methods.


Friday, October 26, 2007

Kevin Potvin and peak oil

Kevin Potvin, who publishes a give away eight page newspaper in Vancouver called The Republic of East Vancouver did an article titled 'Peak Oil Already Arrived in 2006. The article will not be available electronically for a couple of weeks. It is drawn from the study done by Energy Watch Group of Germany.

Kevin's politics are fairly obvious but he has done us a service by attempting to appreciate the impact of the anticipated decline in oil production.

The report essentially says that we are now facing an unrelenting 2% annual decline in oil production. This means that todays 83 million barrels per day will fall to 58 million barrels per day in 2020 and 39 million barrels per day in 2030. The truth is that everyone in the oil industry knows this and are positioning themselves accordingly. In the meantime everyone else is whistling in the dark and the political leadership is paralyzed by the glare of the freight train. I am sure George Bush is fervently hoping that this chicken does not come home to roost in the waning months of his mandate.

This is, of course, no more than what I have been saying in my posts. Energy Watch has fleshed in the details. This report can be downloaded from the referenced link.

It gives me no pleasure to play Cassandra at the Oil party. We can all see that no one really wants to believe that this is happening. The rest of the media has not even started to realize how big this story actually is. So long as the pain is fairly minor it is easy to pretend that tomorrow will never come. I expect that the US will release part of its its strategic reserves as a move to hold down domestic prices when the push comes, but this will be only a band aid.

We are facing a twenty year scramble to replace transportation fuel. During that twenty year span, the automobile as we know it will be driven from the road. It is the one single source of non essential oil consumption that we can displace to make up the shortfall. We are all going to have our garages storing hanger queens. Recall that China has built out its share of the modern world with really very limited use of the automobile. We can retreat back to similar levels of usage.

This story is the single biggest news story of this new century and its solution(s) the biggest shift in technology innovation ever imagined. In a single generation we will and must convert over to a purely sustainable energy tool kit.

Those who have read all my various posts know that the necessary solutions are either in hand or are at least identified. The use of algae agriculture is the main event, regardless of the nonsense spouted by champions of various other far more limiting methods. Algae needs a sunny desert, a recyclable water supply and a supply of nitrogen to produce all the fuel we will ever need. We just have not developed the art of it yet, but that is what we are really good at.

Even better, the only byproduct is proven to be excellent cattle feed.

However, let us get all this into perspective. It is ugly.

We consume 83,000,000 barrels of oil per day. Each barrel is about 160 liters of oil. That works out to about 6,000,000,000,000 liters of oil per year. And this has to now also be spread out to each individual of earth to be ultimately fair. What it really means is that each individual needs to produce a thousand liters of oil per year. Yet Oil seeds are hard put to produce 1000 liters per hectare. Algae can theoretically reach production levels of 10,000 liters per acre. This all means that algae oil production using desert lands is our only credible option, with a little help from our many friends in the alternate fuel game.

To replace all that oil, every farm must fit algae culture into their production cycle world wide. And substantial blocks of desert must be put to work. This is all possible, but we now must move quickly. That is the real problem. Glacial action is not a choice anymore. Welcome to the $300 gas tank that I have been promising.

All my suggestions for terra forming the Earth put forth in my posts are now starting to look conservative and will turn out to be almost tentative. The alternative is economic genocide for the globe, and believe me population reduction is not an option.





Friday, October 19, 2007

Algae production for the feed lot

I quote the following summary from a paper on feeding algae to cattle. The paper is well worth reading in its entirety because they discuss feeding protocols to cattle. The results were very positive and even suggestive.

The possibility of using unicellular algae (Chlorella and Scenedesmus) as feed for cattle has been studied. Mixed algal culture was grown in a shallow polythene-lined pond and gave a recorded daily yield of 95 tonnes of algal suspension (packed cell volume 5-10 ml/litre) or 247 kg dry substances per hectare. The cost was about $1.25 (Tk. 50) per tonne of algal suspension production. Dried algal cells contained 613 g crude protein (N x 6.25) and 155 g fibre per kg DM. In a 120 d feeding trial 8 growing cattle (7 females and 1 male), of indigenous breed with mean initial live weight kg 146"9 kg, were fed ad libitum urea- molasses-straw and 2 kg/d wheat bran as basal diet. The treatments were 0.5 kg/d Til (sesame) oil cake per head in group I and ad libitum algal suspension in group II. The suspension was drunk at 10% of animal live weight. These animals received no other liquid (water).

Inclusion of algal suspension did not improve total metabolizable energy (ME) or crude protein (N x 6.25) intake but increased daily gain, although insignificantly (P > 0.05) from 399 g for the oil cake treatment to 458 g in the algae group. The feed conversion efficiencies were 6.2 and 7.4 g live weight gain per MJ ME intake for the oil cake and algae groups, respectively. Crude fibre digestibility was significantly (P < 0.01) higher in the algae (81.1%) than the oil cake group (76.2%). For the 120 d feeding trial, the estimated net economic loss was $5.0 (Tk. 200)/animal on oil cake while there was a $14.4 (Tk. 576) profit/animal on algae.

This is actually along way down the road in the road in the mastering of algae husbandry. Dry weight algae is a prime animal feedstock on its own. If we successfully select an algae blend that also maximizes the production of biodiesel, we have a very economic protocol for the production of both feed and oil.

At present the best oil production is around ten times the oil production from oilseeds. The potential is ten times that. Of course at the present time I am mixing apples and oranges as these two applications must have some level of conflict which we need to overcome.

What I am reaching for, though is a least effort protocol for the algae production stream. A system that produces oil and feed through a one step process is very attractive to farm operation. You are continuously shipping oil at the farm gate and consuming the pressed algae as cattle feed. The indicated efficiency of the feed aspect means that any oil production is a bonus to the feed lot.

A conversion of the global cattle industry over to algae feed has the additional benefit of releasing huge amounts of acreage from feed grain production.

In fact this revelation will create a huge demand for an algae production protocol on the part of the agricultural industry. The oil aspect and the release of land will be a bonus.

It was also noted that the production rate approached 100 tons of dry product per hectare compared to a previously reported 10 tons per hectare. Comparing either figure to grain production of perhaps a ton per acre is very compelling. A lower oil yield may even be acceptable in this type of regime.

Of course, this requires a nitrogen fertilizer input that is significant but obviously vastly superior to cropland fertilization in which the bulk of the fertilizer is currently lost. and never used.

The idea of having a one acre algae field replacing as much as fifty acres of grain production is very compelling.

Thursday, October 11, 2007

Nuclear Future

As my readers know, I do not lose much sleep over any likely shortage of grid power anytime soon. There is just too many ways to improve utilization and to produce this power load. Surprisingly, the least costly source of new power available to us will continue to be nuclear, provided we continue our perfection of process.

Fear of something has crippled the industry for thirty years. Yet the industry needs only to advance the engineering a little to make the technology bullet proof, permitting containable accidents only.

More importantly, the advent of breeder reactors will allow fuel to be reprocessed and essentially reused until the uranium itself is fully consumed. This will eliminate the spent fuel storage problem. (which is why the utilities keep the stuff) It is just that this whole cycle will take many decades to totally implement, but we will get there.

Again we have to struggle with the public relations problem presented by plutonium. And again the security protocols must be bullet proof. Engineering can do this.

We are now expecting a three fold increase in nuclear plants to take the place of non existent hydro plants. This inventory should be sufficient for the globe with additional grid power needs fulfilled by the range of alternates.

These alternates properly include volcanic geothermal. a little hydro,wind and tidal, and a lot of fossil fuel for decades to come.

I do not think that solar will ever be a good choice for grid power. It really wants to be operated off grid because of the space requirement. It really shines on the roof of a building suppling that building. On the other hand, it may become so much in surplus that we have to feed it into the grid.

My own sympathies are to take the excess solar energy and use it to harvest atmospheric water for the local trees. This will be a great choice in most places except the occasional rain forest.

My real point is that the advance of technology will put us in an ocean of electrical energy. Imagine the Sahara desert totally forested and watered through stand alone solar panel driven water collectors. The surpluses would be unbelievable. To say nothing of the likely surplus of water that will build up and develop drainages. Recall that the Sahara used to be covered with large lakes.

The difficulty is that electricity does not transport very well. It was the increase in transmission distances by several hundred miles that permitted the development of James Bay in Quebec. Any protocol that could eliminate the transmission by wire system we have with a truck friendly containment system would be a revolution in energy and would at least double our current available energy supply. It would also lead to a possible fix in transportation energy.

Right now, it is a possibility in theory only, with the implementing technology still too undeveloped. And if biodiesel from algae pans out, we will never really need to go there except as an intellectual exercise.



Wednesday, September 12, 2007

Cars and the future

Yesterday we addressed the wasted energy tied up in the rail industry and the air pad strategy for hugely reducing the wastage. Its success would also shift most long haul trucking off the roads saving even more energy.

Economic pressure has wrought a revolution in energy wastage reduction for static energy use. Every factory today is built with an eye toward energy efficiency simply because it impacts directly on the bottom line. This has been underway for over thirty years and will naturally continue.

This leaves us with the real problem of wastage in personnel transport. That does not mean driving slower or the like. The fundamental difficulty is weight. The customer wants his ton of comfort and utility. I do not see any way that we are going to change that. We can only make it inconvenient for most to drive to work and we can make public transport super convenient.

Nothing we do is going to end the fact that the consumer wants this type of asset.

This means that the design parameters will continue to call for a ton of weight to transport 200 pounds of cargo. Our transportation is costing us ten times what is necessary in terms of energy.

Design and technology is whittling away at the weight problem.The only problem with that is that a lighter vehicle becomes cheaper sending the customer upmarket to larger vehicles. The point is that before the century is out, mankind is going to own several billion personal transportation devices. All the innovation in the world will only make them larger and lighter.

The only place in a car were we can lose weight is in the power train principally perhaps by converting to electric wheels and a minimized power source. The problem of course is the minimized power source. We are still nowhere near a successful design strategy to replace what is now on the road. At least the hybrid philosophy promises to give us a large leg up once it fully matures.

So we are at least going the right direction. Our vehicles will squeeze the maximal millage out.


The task of feeding these horses comes back on our shoulders. And so far we are really stuck with oil products. All other available quick fixes is a small percentage of our needs. We simply cannot grow enough ethanol, we will never convert cellulose, and we cannot store static power in an effective manner.

In fact the only light on the horizon is the use of algae to produce biodiesel. It has the theoretical capability to produce enough biodiesel to satisfy all our needs without disrupting the agricultural economy.

The first experiments are under way and we are hearing about projected yields that are ten times any oilseed crop.

We can draw one conclusion though. All the available transportation oil will be gone over the next one hundred years whatever we hope to do unless replaced very soon by algae sourced oil.

Tuesday, August 7, 2007

Confronting Oil Production Decline.

Those who have been following this blog know that the removal of oil from the transportation equation is not the end of life as we knew it. In fact, the advent of algae derived oil and even ethanol will easily meet all our needs without significantly interfering with crop production.

Although the technology is in its infancy, it also promises very fast implementation. As I mentioned earlier, the idea of a field of large vinyl tubes holding the working fluid is something every farmer can relate to. And 10,000 liters of oil per acre is an awful lot of bio diesel fuel.

We can even imagine a few farms near every major city providing the local fuel needs. That is pretty efficient.

However, while we fiddle, the crude oil industry is steadily converging on the tipping point. And I want to describe what this means. We have had $60.00 oil for four years and every producer went full out to take advantage of this great price. This did not bring an oversupply that knocked the price down. It did in the early eighties.

In fact, supplies are now tightening. We can also easily see that new supply, particularly from the tar sands, face huge lead times. More importantly, this oil is replacing visible declines elsewhere. It is conceivable that North America may achieve oil security for a generation by use of the tar sands. This will not happen elsewhere. Brazil is looking like a genius now because they planned for this.

The problem that no one wants to address is that by squeezing production to maintain current levels, we set the stage for a precipitous decline. Try to imagine the production of Saudi Arabia disappearing over the next three years. It will hurt like hell, even if we have the solution.

My fear right now is that it will be far faster than we can imagine. All other declines were.

Any new production if found will suddenly become too valuable for a country to release it into the global market. Every country will start rationing.

As I posted earlier, we are going to suffer with a $200 to $400 fill up until we can bring bio diesel online.


Monday, July 30, 2007

Scale of Algae oil and the Oil Sands

It is compelling that a strain of algae can contain as high as 60% oil. And that we can produce at least 10,000 liters per hectare. Browsing the material out there suggests that as we develop actual skill and art, our production levels can climb to at least twice that and perhaps much higher than that. This becomes particularly likely if the production system is designed to present (for example) a foot of working fluid to the sun and that foot of working fluid can ultimately produce a liter or two of oil per year. This is not obviously a tall order.

Right now, this technology is crawling out of the lab, but it is patently easy to see why there is enthusiasm.

What we need more of right now is brainstorming on working protocols to take this technology away from the lab and industrial engineering mindset were everything is done with glass and stainless steel.

I personally do not think that using open ponds is a good idea because of the likely interference of wild strains, but I could be dead wrong here. I like the idea of a closed system using large vinyl bags, but even that could turn into a handling problem. Plastic tube systems are great for the humans but must have a catastrophic capital cost that will prevent usage.

I am reminded of the first handling protocol designed for the oil sands in northern Alberta. Everyone thought that conveyor belts would be an ideal solution. They were a disaster instead.

I wonder if the monster waste water retaining ponds associated with the oil sands could be used for algae production during the summer season. There are a lot of minerals dissolved in the water making it inappropriate for easy discharge, yet if algae stripped out these minerals while producing oil, then we may have the beginnings of a solution. One of the dirty little secrets of the Oil sands is that the process water is not been disposed off because there is simply too much to dump in the river. Algae production would produce a nutrified dry feedstock that may be transportable away from the ponds. The real problem is whether that is even slightly sufficient or is it just an economic way of maintaining the ponds in perpetuity. From the human perspective, it is still a solution if it turns out to be possible.

Algae production will require nutrients. Even the ocean requires nutrification as our report on seeding the ocean with iron clarifies. This is another reason that this technology will have to be made farmer friendly since they are already handling the types of processes involved. and are already accessing the nutrients.

Friday, July 27, 2007

Fuel and Algae

We are now coming to grips with the reality of the end of cheap oil and the ultimate rationing and reallocation of oil resources to highest and best usage. If transportation could be shifted onto another protocol, then we will gain hugely by the simple diversion of oil to the petrochemical business. There would be enough supply to last a fully developed global economy a very long time.

This means that it is time to revisit the promise of algae production. First off, certain stains of algae produce a huge amount of biological oil and can be easily stimulated to do even better. It has been calculated that while the best oil seed can produce around 1000 liters per hectare, algae can produce 10,000 liters per hectare. This is both huge and extremely compelling. Obviously a major investment in product development is called for.

It also appears likely that the by product dry or wet can be fairly easily made into a feedstock for ethanol production. And the combination of ethanol and the biological oil is a viable diesel fuel in its own right without even further processing. of course, it will be better to do some form of fractionation to split out higher valued components. It is just not necessary.

At the present, the cheerleaders of this technology are thinking of placing this technology out in the deserts were a few thousand square miles will readily supply all our fuel needs. I doubt that would be a good idea.

The practical solution will be to develop the economic model around a farm gate. After all you require the hands on maintenance and growing expertise that an experienced farmer can provide.

If we imagine a 2 hectare algae growing facility, perhaps using inexpensive vinyl tubes with a three foot diameter to hold the working medium as I have seen demonstrated, then we can model the necessary handling equipment and resources. Fertilizer and nutrients need to be continuously introduced and product will need to be removed at the rate of perhaps 2 tons per month.

That is still quite a little facility. The two tons will need to be squeezed for oils and the byproduct will have to be placed into a fermenting vat for several days. However that two tons is very transportable using the equipment every farmer has available.

The important thing is that this can be completely within the parameters of any working farm and particularly those farms that are under utilizing the land resource because their principal business is growing a chickens (for example). This would interfere very little with the demands of such an operation.

And the gross revenue will be ten times that experienced with any other oil crop. That is very attractive. Even at ten cents a liter earned that is still still double the return on any other oilseed crop.



Thursday, July 5, 2007

Revealing report on Algae project

This provides an excellent review of the promise of algae. The protocol used is also easily removing the other combustion products, which if true is very happy news.

Without question, we need an easier way to generate ethanol than using food or fighting with cellulose. This has the huge additional advantage of been very suitable for power plants and the desert. Converting algae into the three usable streams of oil, ethanol and complex organic waste is an extremely promising first step and is likely very forgiving.




Click here to read this story online:
http://www.csmonitor.com/2006/0111/p01s03-sten.html

Headline: Algae - like a breath mint for smokestacks
Byline: Mark Clayton Staff writer of The Christian Science Monitor
Date: 01/11/2006

BOSTON - Isaac Berzin is a big fan of algae. The tiny, single-celled plant, he says, could transform the world's energy needs and cut global warming.

Overshadowed by a multibillion-dollar push into other "clean-coal" technologies, a handful of tiny companies are racing to create an even cleaner, greener process using the same slimy stuff that thrives in the world's oceans.

Enter Dr. Berzin, a rocket scientist at Massachusetts Institute of Technology. About three years ago, while working on an experiment for growing algae on the International Space Station, he came up with the idea for using it to clean up power-plant exhaust.

If he could find the right strain of algae, he figured he could turn the nation's greenhouse-gas-belching power plants into clean-green generators with an attached algae farm next door.

"This is a big idea," Berzin says, "a really powerful idea."

And one that's taken him to the top - a rooftop. Bolted onto the exhaust stacks of a brick-and-glass 20-megawatt power plant behind MIT's campus are rows of fat, clear tubes, each with green algae soup simmering inside.

Fed a generous helping of CO2-laden emissions, courtesy of the power plant's exhaust stack, the algae grow quickly even in the wan rays of a New England sun. The cleansed exhaust bubbles skyward, but with 40 percent less CO2 (a larger cut than the Kyoto treaty mandates) and another bonus: 86 percent less nitrous oxide.

After the CO2 is soaked up like a sponge, the algae is harvested daily. From that harvest, a combustible vegetable oil is squeezed out: biodiesel for automobiles. Berzin hands a visitor two vials - one with algal biodiesel, a clear, slightly yellowish liquid, the other with the dried green flakes that remained. Even that dried remnant can be further reprocessed to create ethanol, also used for transportation.

Being a good Samaritan on air quality usually costs a bundle. But Berzin's pitch is one hard-nosed utility executives and climate-change skeptics might like: It can make a tidy profit.

"You want to do good for the environment, of course, but we're not forcing people to do it for that reason - and that's the key," says the founder of GreenFuel Technologies, in Cambridge, Mass. "We're showing them how they can help the environment and make money at the same time."

GreenFuel has already garnered $11 million in venture capital funding and is conducting a field trial at a 1,000 megawatt power plant owned by a major southwestern power company. Next year, GreenFuel expects two to seven more such demo projects scaling up to a full pro- duction
system by 2009.

Even though it's early yet, and may be a long shot, "the technology is quite fascinating," says Barry Worthington, executive director of US Energy Association in Washington, which represents electric utilities, government agencies, and the oil and gas industry.

One key is selecting an algae with a high oil density - about 50 percent of its weight. Because this kind of algae also grows so fast, it can produce 15,000 gallons of biodiesel per acre. Just 60 gallons are produced from soybeans, which along with corn are the major
biodiesel crops today.

Greenfuel isn't alone in the algae-to-oil race. Last month, Greenshift Corporation, a Mount Arlington, N.J., technology incubator company, licensed CO2-gobbling algae technology that uses a screen-like algal filter. It was developed by David Bayless, a researcher at Ohio
University.

A prototype is capable of handling 140 cubic meters of flue gas per minute, an amount equal to the exhaust from 50 cars or a 3-megawatt power plant, Greenshift said in a statement.

For his part, Berzin calculates that just one 1,000 megawatt power plant using his system could produce more than 40 million gallons of biodiesel and 50 million gallons of ethanol a year. That would require a 2,000-acre "farm" of algae-filled tubes near the power plant. There are nearly 1,000 power plants nationwide with enough space nearby for a few hundred to a few thousand acres to grow algae and make a good profit, he says.

Energy security advocates like the idea because algae can reduce US dependence on foreign oil. "There's a lot of interest in algae right now," says John Sheehan, who helped lead the National Renewable Energy Laboratory (NREL) research project into using algae on smokestack
emissions until budget cuts ended the program in 1996.

In 1990, Sheehan's NREL program calculated that just 15,000 square miles of desert (the Sonoran desert in California and Arizona is more than eight times that size) could grow enough algae to replace nearly all of the nation's current diesel requirements.

"I've had quite a few phone calls recently about it," says Mr. Sheehan. "This is not an outlandish idea at all."


Wednesday, July 4, 2007

Algae for energy production

There is a lot of work underway investigating methods of using algae for energy production. Of course, there are a lot of optimistic claims been tossed about.

What is immediately attractive is the fact that unlike corn, algae can be produced in factory like environs out in the middle of the desert where the maximum sun is available. This means that it will not compete in any significant manner with agriculture.

The water component,and even the nutrients can be recycled through a closed loop system. At least in theory. Indications are that the algae is also a maximum efficiency solar energy conversion medium. This means that the per acre production should be at least an order of magnitude greater than traditional agricultural protocols. And early claims suggest that.

Right now there are multiple protocols been tested for exploiting this very promising medium.

The one that I am truly keen about is the conversion of the material into ethanol by fermentation. As usual it is not simple, but I have to believe that it will be much more promising that cellulose conversion.

And the problem we face there is the need for a high volume feedstock capable of supporting an ethanol industry large enough to solve transportation needs. Seed corn cannot do it and cellulose is going to be expensive even if we can improve the process chemistry. To say nothing of competing with other significant agricultural needs.

Using a one hundred percent controlled environment gives us a chance to use our biochemistry expertise and even genetic engineering to maximize effect since the result will not face the natural competition of the biosphere.

We cannot hope to do this with trees and crops easily.