TERRAFORMING TERRA We discuss and comment on the role agriculture will play in the containment of the CO2 problem and address protocols for terraforming the planet Earth. A model farm template is imagined as the central methodology. A broad range of timely science news and other topics of interest are commented on.
Monday, February 8, 2010
Longevity Pill Now Possible
Friday, March 20, 2009
TR10 Liquid Battery
Now for our next trick, let us get the energy density up.
Again, it is easy to imagine tankage doing the energy storage work with this device although it would have to be kept hot which is no problem when used with a power station.
This actually promises to be superior strategy when combined with large power output. Fit these into a grid, and it becomes simple to match demand on an as needed basis allowing optimization with all overages carried by the batteries.
And why was this problem not tackled a century ago? The method below is nineteenth century capability.
TR10: Liquid Battery
http://www.technologyreview.com/energy/22116/
Donald Sadoway conceived of a novel battery that could allow cities to run on solar power at night.
By Kevin Bullis
Without a good way to store electricity on a large scale, solar power is useless at night. One promising storage option is a new kind of battery made with all-liquid active materials. Prototypes suggest that these liquid batteries will cost less than a third as much as today's best batteries and could last significantly longer.
The battery is unlike any other. The electrodes are molten metals, and the electrolyte that conducts current between them is a molten salt. This results in an unusually resilient device that can quickly absorb large amounts of electricity. The electrodes can operate at electrical currents "tens of times higher than any [battery] that's ever been measured," says Donald Sadoway, a materials chemistry professor at MIT and one of the battery's inventors. What's more, the materials are cheap, and the design allows for simple manufacturing.
The first prototype consists of a container surrounded by insulating material. The researchers add molten raw materials: antimony on the bottom, an electrolyte such as sodium sulfide in the middle, and magnesium at the top. Since each material has a different density, they naturally remain in distinct layers, which simplifies manufacturing. The container doubles as a current collector, delivering electrons from a power supply, such as solar panels, or carrying them away to the electrical grid to supply electricity to homes and businesses.
http://www.technologyreview.com/energy/22116/page2/
Discharged, charging, charged: The molten active components (colored bands: blue, magnesium; green, electrolyte; yellow, antimony) of a new grid-scale storage battery are held in a container that delivers and collects electrical current (left). Here, the battery is ready to be charged, with positive magnesium and negative antimony ions dissolved in the electrolyte. As electric current flows into the cell (center), the magnesium ions in the electrolyte gain electrons and form magnesium metal, which joins the molten magnesium electrode. At the same time, the antimony ions give up electrons to form metal atoms at the opposite electrode. As metal forms, the electrolyte shrinks and the electrodes grow (right), an unusual property for batteries. During discharge, the process is reversed, and the metal atoms become ions again.
As power flows into the battery, magnesium and antimony metal are generated from magnesium antimonide dissolved in the electrolyte. When the cell discharges, the metals of the two electrodes dissolve to again form magnesium antimonide, which dissolves in the electrolyte, causing the electrolyte to grow larger and the electrodes to shrink (see above).
Sadoway envisions wiring together large cells to form enormous battery packs. One big enough to meet the peak electricity demand in New York City--about 13,000 megawatts--would fill nearly 60,000 square meters. Charging it would require solar farms of unprecedented size, generating not only enough electricity to meet daytime power needs but enough excess power to charge the batteries for nighttime demand. The first systems will probably store energy produced during periods of low electricity demand for use during peak demand, thus reducing the need for new power plants and transmission lines.
Many other ways of storing energy from intermittent power sources have been proposed, and some have been put to limited use. These range from stacks of lead-acid batteries to systems that pump water uphill during the day and let it flow back to spin generators at night. The liquid battery has the advantage of being cheap, long-lasting, and (unlike options such as pumping water) useful in a wide range of places. "No one had been able to get their arms around the problem of energy storage on a massive scale for the power grid," says Sadoway. "We're literally looking at a battery capable of storing the grid."
Since creating the initial prototypes, the researchers have switched the metals and salts used; it wasn't possible to dissolve magnesium antimonide in the electrolyte at high concentrations, so the first prototypes were too big to be practical. (Sadoway won't identify the new materials but says they work along the same principles.) The team hopes that a commercial version of the battery will be available in five years.
Friday, March 13, 2009
EEStor versus Fast Lithium
Lithium technology has already been optimized in many ways and this breakthrough finally allows fast charging. Because there is a huge industry infrastructure in place, it will seamlessly slide into all aspects of the market fairly quickly.
Something is made of the heat issue, but that is a red herring. Lithium batteries have been charged by trickle down transformer kits because of battery limitations. Now we will have high speed transformer kits that are well understood and represent no problem at all.
The bottom line is that lithium currently provides maximum energy density. A fast lithium battery is a good proposition for an electric car.
Quite simply, this will make the electric car practical for almost everyone. We jump from a small percentage of the market to most of the market with this breakthrough.
EEStor promises as much and ultimately a lot more, and on commercial delivery will have the same impact.
Otherwise, the next generation of lithium batteries will now be hugely faster and will swiftly penetrate the general battery market. Thereafter all devices will be charged as you briefly wait.
New Battery Could Recharge in Seconds
By Alexis Madrigal March 11, 2009 3:28:20 PMCategories: Chemistry, Clean Tech
http://blog.wired.com/wiredscience/2009/03/superbattery.html
A new battery material that recharges 100 times faster than the lithium-ion in your laptop has been revealed by researchers at MIT.
The discovery could lead to cellphone-sized batteries that could be charged in 10 seconds.
"The ability to charge and discharge batteries in a matter of seconds rather than hours may open up new technological applications and induce lifestyle changes," wrote materials scientists Gerbrand Ceder and Byoungwoo Kang Wednesday in the journal Nature.
In energy storage, there has always been a trade-off between the amount of energy a material could store and how quickly you could discharge it. Batteries were pretty good at storing energy (although not nearly as good as oil), but getting energy into and out of them was tough. Ultracapacitors, and their cousins, supercapacitors, can deliver a lot of charge really quickly, but it takes 20 times more of their materials to store the same energy as a comparable battery.
The new battery material appears to solve that problem by creating a "fast-lane" for ions to move around the lithium iron phosphate material. By applying a special surface coating to the old material, they allow the ions to speed around the battery at rates that are nearly unimaginable.
Rob Farrington of the National Renewable Energy Laboratory's advanced vehicle group, called the battery's ability to deliver energy "remarkable."
But questions remain. Fast-charging might be convenient, Farrington noted, but it requires running a large amount of current to the battery, which he worried would reduce the battery's life.
"High current means lots of heating. If you have high temperatures, you have to ask the question, are you detrimentally affecting the life of the battery?" he said. "The answer is that it's going to shorten the life."
The MIT duo's Nature paper only presents data through 50 charge/recharge cycles, but what's there is promising: There's nearly no drop in capacity.
But as any laptop owner knows, the more charging cycles you go through, the less energy your battery stores. The same battery that let you work for three hours a couple years ago only yields an hour-and-a-half at the coffee shop now.
That's one place where ultracapacitors are likely to retain their advantage over just about any battery.
"There are a lot of applications where you have to charge or discharge hundreds of times a day and in that, ultracapacitors have a very clear advantage," said Joel Schindall, who is heading a separate MIT research effort to develop carbon nanotube-based ultracapacitors.
Still, ultracap producers, though they've made inroads in niche markets. have had a hard time coming up with ultracapacitors that store anywhere near as much energy per weight or volume as a lithium-ion battery. Schindall's effort made waves in 2006 when the MIT Technology Review raved, "A breakthrough technology is holding forth the promise of charging electronic gadgets in minutes, never having to replace a battery again, and dropping the cost of hybrid cars."
But the effort has "stretched out," Schindall said — and he's not sure when his ultracapacitors will be ready to commercialize.
"I don't know whether that will be a week or a month or a year," he said.
Batteries, and all kinds of energy-storage devices, have a notoriously difficult time scaling out of the laboratory into production. We've previously likened the scale challenge to that faced by high school cafeterias. Even if the lunch ladies try to emulate home cooking or a restaurant kitchen, it's just fundamentally harder to cook for 3,000 people than it is to cook for 30 or three. Most of the time, you can't just make the process bigger, you need a new process.
And directly tied into the ability to create an industrial-scale process is the issue of cost, which Farrington said was always one of the barriers to the adoption of energy-storage technology.
Still, Ceder is optimistic. He believes his batteries could make it to the market in two to three years. The tech has already been licensed by two companies. One, A123 Systems, is a U.S. startup that's partnering with General Motors on the Chevy Volt's battery. The other, Umicore, supplies materials to battery manufacturers across the world.
Thursday, 10 am: Updated to include names of companies with licenses to use the material.
Citation: "Battery materials for ultrafast charging and discharging" by Byoungwoo Kang & Gerbrand Ceder doi:10.1038/nature07853
Saturday, November 1, 2008
2007 Methane Anomaly
A better explanation may well be that the unusual warming patterns released a surplus of methane from the soils around the world and generated these unusual readings.
Methane is unstable and highly reactive in the atmosphere with any surplus been removed into the troposphere. All natural conditions converge on quickly removing methane from the atmosphere.
The speed of that removal is confirmed by the lack of persistence of land generated methane out over the oceans. If methane has risen at all then something is and has changed in the here and now.
I expect that these figures will not be repeated for 2008.
MIT scientists baffled by global warming theory, contradicts scientific data
Trendwatch
By Rick C. Hodgin
Thursday, October 30, 2008 09:55
Boston (MA) - Scientists at MIT have recorded a nearly simultaneous world-wide increase in methane levels. This is the first increase in ten years, and what baffles science is that this data contradicts theories stating man is the primary source of increase for this greenhouse gas. It takes about one full year for gases generated in the highly industrial northern hemisphere to cycle through and reach the southern hemisphere. However, since all worldwide levels rose simultaneously throughout the same year, it is now believed this may be part of a natural cycle in mother nature - and not the direct result of man's contributions.
Methane - powerful greenhouse gas
The two lead authors of a paper published in this week's Geophysical Review Letters, Matthew Rigby and Ronald Prinn, the TEPCO Professor of Atmospheric Chemistry in MIT's Department
of Earth, Atmospheric and Planetary Science, state that as a result of the increase, several million tons of new methane is present in the atmosphere.
Methane accounts for roughly one-fifth of greenhouse gases in the atmosphere, though its effect is 25x greater than that of carbon dioxide. Its impact on global warming comes from the reflection of the sun's light back to the Earth (like a greenhouse). Methane is typically broken down in the atmosphere by the free radical hydroxyl (OH), a naturally occurring process. This atmospheric cleanser has been shown to adjust itself up and down periodically, and is believed to account for the lack of increases in methane levels in Earth's atmosphere over the past ten years despite notable simultaneous increases by man.
More study
Prinn has said, "The next step will be to study [these changes] using a very high-resolution atmospheric circulation model and additional measurements from other networks. The key thing is to better determine the relative roles of increased methane emission versus [an increase] in the rate of removal. Apparently we have a mix of the two, but we want to know how much of each [is responsible for the overall increase]."
The primary concern now is that 2007 is long over. While the collected data from that time period reflects a simultaneous world-wide increase in emissions, observing atmospheric trends now is like observing the healthy horse running through the paddock a year after it overcame some mystery illness. Where does one even begin? And how relevant are any of the data findings at this late date? Looking back over 2007 data as it was captured may prove as ineffective if the data does not support the high resolution details such a study requires.
One thing does seem very clear, however; science is only beginning to get a handle on the big picture of global warming. Findings like these tell us it's too early to know for sure if man's impact is affecting things at the political cry of "alarming rates." We may simply be going through another natural cycle of warmer and colder times - one that's been observed through a scientific analysis of the Earth to be naturally occuring for hundreds of thousands of years.Project funding
Rigby and Prinn carried out this study with help from researchers at Commonwealth Scientific and Industrial Research Organization (CSIRO), Georgia Institute of Technology, University of Bristol and Scripps Institution of Oceanography. Methane gas measurements came from the Advanced Global Atmospheric Gases Experiment (AGAGE), which is supported by the National Aeronautics and Space Administration (NASA), and the Australian CSIRO network.
Wednesday, August 13, 2008
Energy Storage Breakthrough at MIT
We now have an efficient energy storage protocol to go with our efficient thin film wide temperature band refrigeration discovery and the emerging printed nanosolar film technology. They are all slotted for commercialization over the next four years.
Of course everyone is been coy as to actual efficiencies at this time but would not be talking unless they are expecting a vast improvement over past alternatives. We know that the nanosolar crowd has started their pricing at $1.00 per watt. This will displace all the competition and also indicates that a further order of magnitude price decline is a possibility. Making the separation of hydrogen and oxygen efficient suggests that the swing between storage and utilization is perhaps dropping under twenty percent which is sufficient to make hydrogen the energy storage medium of choice.
Future solar energy conversion efficiencies can be expected to approach and surpass the thirty percent mark and achieve this by harvesting infrared energy also. The efficiency of the refrigeration material is driven by the available temperature range. This was dogged until recently by a ten to twenty degree spread but this has now opened up to one hundred degrees. A lot of things have just become possible and not just cheaper.
Arthur C. Clark missed seeing these announcements by mere months. He predicted these developments forty years ago, in particular the access to solar energy at costs under $1.00 per installed watt.
You must understand. This all means that a home can be clad in a nanosolar skin that supplies all power while storing surplus for the nighttime and will also cool the inside with another interior skin. The house will be a net exporter of energy, perhaps sufficient to supply a hydrogen based vehicle or two. Fuel cells just became important again.
There is still a couple of years of development to grind through, but after seeing how quickly nanosolar has been launched, I am been conservative.
MIT develops way to bank solar energy at home
/energy/article/37841CAMBRIDGE, Massachusetts (Reuters) - A U.S. scientist has developed a new way of powering fuel cells that could make it practical for home owners to store solar energy and produce electricity to run lights and appliances at night.
A new catalyst produces the oxygen and hydrogen that fuel cells use to generate electricity, while using far less energy than current methods.
With this catalyst, users could rely on electricity produced by photovoltaic solar cells to power the process that produces the fuel, said the Massachusetts Institute of Technology professor who developed the new material.
"If you can only have energy when the sun is shining, you're in deep trouble. And that's why, in my opinion, photovoltaics haven't penetrated the market," Daniel Nocera, an MIT professor of energy, said in an interview at his Cambridge, Massachusetts, office. "If I could provide a storage mechanism, then I make energy 24/7 and then we can start talking about solar."
Solar has been growing as a power source in the United States -- last year the nation's solar capacity rose 45 percent to 750 megawatts. But it is still a tiny power source, producing enough energy to meet the needs of about 600,000 typical homes, and only while the sun is shining, according to data from the Solar Energy Industries Association.
Most U.S. homes with solar panels feed electricity into the power grid during the day, but have to draw back from the grid at night. Nocera said his development would allow homeowners to bank solar energy as hydrogen and oxygen, which a fuel cell could use to produce electricity when the sun was not shining.
"I can turn sunlight into a chemical fuel, now I can use photovoltaics at night," said Nocera, who explained the discovery in a paper written with Matthew Kanan published on Thursday in the journal Science.
Companies including United Technologies Corp produce fuel cells for use in industrial sites and on buses.
POTENTIAL FOR CLEAN ENERGY
Fuel cells are appealing because they produce electricity without generating the greenhouse gases associated with global climate change. But producing the hydrogen and oxygen they run on typically requires burning fossil fuels.
That has prompted researchers to look into cleaner ways of powering fuel cells. Another researcher working at Princeton University last year developed a way of using bacteria that feed on vinegar and waste water to generate hydrogen, with minimal electrical input.
James Barber, a biochemistry professor at London's Imperial College, said in a statement Nocera's work "opens up the door for developing new technologies for energy production, thus reducing our dependence on fossil fuels and addressing the global climate change problem."
Nocera's catalyst is made from cobalt, phosphate and an electrode that produces oxygen from water by using 90 percent less electricity than current methods, which use the costly metal platinum.
The system still relies on platinum to produce hydrogen -- the other element that makes up water.
"On the hydrogen side, platinum works well," Nocera said. "On the oxygen side ... it doesn't work well and you have to put way more energy in than needed to get the (oxygen) out."
Current methods of producing hydrogen and oxygen for fuel cells operate in a highly corrosive environment, Nocera said, meaning the entire reaction must be carried out in an expensive highly-engineered container.
But at MIT this week, the reaction was going on in an open glass container about the size of two shot glasses that researchers manipulated with their bare hands, with no heavy safety gloves or goggles.
"It's cheap, it's efficient, it's highly manufacturable, it's incredibly tolerant of impurity and it's from earth-abundant stuff," Nocera explained.
Nocera has not tried to construct a full-sized version of the system, but suggested that the technologies to bring this into a typical home could be ready in less than a decade.
The idea, which he has been working on for 25 years, came from reflecting on the way plants store the sun's energy.
"For the last six months, driving home, I've been looking at leaves, and saying, 'I own you guys now,'" Nocera said.
(Editing by Vicki Allen)
Monday, July 14, 2008
Solar Windows
This news release on the making of very efficient panes of glass that collect and convert a portion of the incoming light is a nifty bit of work. It can allow the use of installed windows as household energy collectors.
Previously discussed printed nanosolar systems are hugely more important but do not easily address windows. What we have here is a neat strategy for siphoning a portion of the incoming light and transporting it to the edges were in concentrated form it is collected by efficient standard solar cells.
This also reminds me of the use of window panes containing a minute amount of dissolved gold on office buildings. I believe that they cut hugely into the amount of infrared light that came through. Other metals are obviously now used for the same effect.
The difficulty with this technology is the wonderful word ‘organic’. To get working dyes that will last even twenty years let alone forever is a very tall order. Mechanical protection is no big trick and installed diodes on the edges may not even have to be continuous. We are looking at concentration factors of at least twenty to one and likely much higher (the factor is twice edge length in inches for an eighth inch thick pane.). The constraint will be the absorption capacity of the photovoltaic diode. It should also be possible to design things so that a broken pane can be replaced without replacing the diodes mounted in the frame.
Again, once manufacturing and usage becomes ubiquitous, the technology can be advanced on a step by step basis to achieve better efficiencies. Thus been able to trade out the panes at will is a commercial advantage. Remember that we have used the light bulb socket for one hundred year. Our new technology which finally became possible had to design around this installed base. I could not imagine using the screw-in format otherwise.
This is, even with concerns over the life of the dyes, a neat way to utilize windows without affecting anything else in the building itself such as placing a system of panels on the roof. This technology neatly changes out the current installed base of windows while providing a power source that can be easily integrated into the newly developing paradigm of local solar energy generation that is about to be driven by cheap nanosolar power.
I have this vision of thousands of houses dumping surplus power as well as any unused stored power into the grid every day. There is good reason to expect every household to become a net power exporter even after consuming its share of urban transportation energy.
MIT opens new 'window' on solar energy
Cost effective devices expected on market soon
Elizabeth A. Thomson, News Office
July 10, 2008
Imagine windows that not only provide a clear view and illuminate rooms, but also use sunlight to efficiently help power the building they are part of. MIT engineers report a new approach to harnessing the sun's energy that could allow just that.
The work, to be reported in the July 11 issue of Science, involves the creation of a novel "solar concentrator." "Light is collected over a large area [like a window] and gathered, or concentrated, at the edges," explains Marc A. Baldo, leader of the work and the Esther and Harold E. Edgerton Career Development Associate Professor of Electrical Engineering.
As a result, rather than covering a roof with expensive solar cells (the semiconductor devices that transform sunlight into electricity), the cells only need to be around the edges of a flat glass panel. In addition, the focused light increases the electrical power obtained from each solar cell "by a factor of over 40," Baldo says.
Because the system is simple to manufacture, the team believes that it could be implemented within three years--even added onto existing solar-panel systems to increase their efficiency by 50 percent for minimal additional cost. That, in turn, would substantially reduce the cost of solar electricity.
- Fact sheet: MIT's solar concentrators
In addition to Baldo, the researchers involved are Michael Currie, Jon Mapel, and Timothy Heidel, all graduate students in the Department of Electrical Engineering and Computer Science, and Shalom Goffri, a postdoctoral associate in MIT's Research Laboratory of Electronics.
"Professor Baldo's project utilizes innovative design to achieve superior solar conversion without optical tracking," says Dr. Aravinda Kini, program manager in the Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science, a sponsor of the work. "This accomplishment demonstrates the critical importance of innovative basic research in bringing about revolutionary advances in solar energy utilization in a cost-effective manner."
Solar concentrators in use today "track the sun to generate high optical intensities, often by using large mobile mirrors that are expensive to deploy and maintain," Baldo and colleagues write in Science. Further, "solar cells at the focal point of the mirrors must be cooled, and the entire assembly wastes space around the perimeter to avoid shadowing neighboring concentrators."
The MIT solar concentrator involves a mixture of two or more dyes that is essentially painted onto a pane of glass or plastic. The dyes work together to absorb light across a range of wavelengths, which is then re-emitted at a different wavelength and transported across the pane to waiting solar cells at the edges.
In the 1970s, similar solar concentrators were developed by impregnating dyes in plastic. But the idea was abandoned because, among other things, not enough of the collected light could reach the edges of the concentrator. Much of it was lost en route.
The MIT engineers, experts in optical techniques developed for lasers and organic light-emitting diodes, realized that perhaps those same advances could be applied to solar concentrators. The result? A mixture of dyes in specific ratios, applied only to the surface of the glass, that allows some level of control over light absorption and emission. "We made it so the light can travel a much longer distance," Mapel says. "We were able to substantially reduce light transport losses, resulting in a tenfold increase in the amount of power converted by the solar cells."
This work was also supported by the National Science Foundation. Baldo is also affiliated with MIT's Research Laboratory of Electronics, Microsystems Technology Laboratories, and Institute for Soldier Nanotechnologies.
Mapel, Currie and Goffri are starting a company, Covalent Solar, to develop and commercialize the new technology. Earlier this year Covalent Solar won two prizes in the MIT $100K Entrepreneurship Competition. The company placed first in the Energy category ($20,000) and won the Audience Judging Award ($10,000), voted on by all who attended the awa