Picked up another bit of encouraging news in the press today. A group of scientists have begun the process of determining how termites digest wood. So far they have separated out a potpourri of enzymes from the insects gut that must be responsible for the breakdown of wood cellulose. This is work that I can support whole heartedly even though it is a very beginning.
As I have already posted, the best method currently available to upgrade a wood based feedstock is to use slow pyrolysis to produce a black acidic liquid at a 70% yield. It looks like oil but it is not. For it to be usable, additional reforming would be needed, and the silence on that subject is not promising. The only positive benefit that I can see using that method is ease of transportation. All this reforming and chemical processing begs the question of actual process energy efficiency.
Yet wood chips are the one biological feedstock that is sufficient to our needs, actually need to be collected in order to properly maintain the health and vigor of our woodlands and forests, and also collects nutrients from deep down that can then be put into our croplands.
And the really frustrating aspect of this feed stock is that cellulose is a molecule produced chemically from long chains of tied together glucose molecules. The fact is that our forests are arguably forests of almost one hundred percent sugar and water that we cannot touch at the moment. Anything that successfully releases that sugar immediately allows the conversion of those sugars into alcohol and thus into ethanol fuel. This can be a wonderful fix to our pending loss of fossil fuel as a transportation energy source.
Simply allowing the material to rot releases the bulk of the material back into the atmosphere as CO2 without any serious gain to ourselves. The soil gain is actually comparatively negligible although this seems to go against common sense. That is why we would like to at least convert a lot of it into charcoal in order to use it as a near surface nutrient sponge.
Now we have a biological research strategy that could actually take us to an industrial production protocol that is capable of converting the global wood chip feed stock that can be readily produced through simple good forest management into a feed stock for ethanol.
Of course, the first painful step is to discover what path ways are been utilized by the digestive processes of a termite. Their extraordinary high efficiency is very compelling and that suggests that the reaction pathway will turn out to be super efficient when we actually can replicate it in a bottle. My only comment is to wonder that no one has tried this already or even done some of the basic research. Of course, there may be an extensive literature out there and we are actually seeing ongoing work been trumpeted as a new idea.
Back in the middle of the twentieth century, it was not uncommon for scientists chasing a new idea to first quietly go to the various scientific journals produced in the late nineteenth century in German to make absolutely sure it was not a new idea. Those boys had a head start on everybody when it came to chemistry and the depth to explore a lot of avenues.
I will be looking for more literature on this subject because it is very important to the future of agriculture and fuel production.
As I have already posted, the best method currently available to upgrade a wood based feedstock is to use slow pyrolysis to produce a black acidic liquid at a 70% yield. It looks like oil but it is not. For it to be usable, additional reforming would be needed, and the silence on that subject is not promising. The only positive benefit that I can see using that method is ease of transportation. All this reforming and chemical processing begs the question of actual process energy efficiency.
Yet wood chips are the one biological feedstock that is sufficient to our needs, actually need to be collected in order to properly maintain the health and vigor of our woodlands and forests, and also collects nutrients from deep down that can then be put into our croplands.
And the really frustrating aspect of this feed stock is that cellulose is a molecule produced chemically from long chains of tied together glucose molecules. The fact is that our forests are arguably forests of almost one hundred percent sugar and water that we cannot touch at the moment. Anything that successfully releases that sugar immediately allows the conversion of those sugars into alcohol and thus into ethanol fuel. This can be a wonderful fix to our pending loss of fossil fuel as a transportation energy source.
Simply allowing the material to rot releases the bulk of the material back into the atmosphere as CO2 without any serious gain to ourselves. The soil gain is actually comparatively negligible although this seems to go against common sense. That is why we would like to at least convert a lot of it into charcoal in order to use it as a near surface nutrient sponge.
Now we have a biological research strategy that could actually take us to an industrial production protocol that is capable of converting the global wood chip feed stock that can be readily produced through simple good forest management into a feed stock for ethanol.
Of course, the first painful step is to discover what path ways are been utilized by the digestive processes of a termite. Their extraordinary high efficiency is very compelling and that suggests that the reaction pathway will turn out to be super efficient when we actually can replicate it in a bottle. My only comment is to wonder that no one has tried this already or even done some of the basic research. Of course, there may be an extensive literature out there and we are actually seeing ongoing work been trumpeted as a new idea.
Back in the middle of the twentieth century, it was not uncommon for scientists chasing a new idea to first quietly go to the various scientific journals produced in the late nineteenth century in German to make absolutely sure it was not a new idea. Those boys had a head start on everybody when it came to chemistry and the depth to explore a lot of avenues.
I will be looking for more literature on this subject because it is very important to the future of agriculture and fuel production.
No comments:
Post a Comment