Monday, January 13, 2014

Spacesuit for Exploring Mars





Step by step the real space suit is emerging.  It will be naturally be at the forefront of technology for a long time.  At least this is beginning to look like the real thing.  We are still some way from a graphene skin, but I am sure we will get there also.  Such as skin would be impossible to wear out and the only seam necessary would be the entry seam.

This is also a powerful signal about what is arriving in the world of apparel.  We expect 3D printers to makes their most significant mark there.  Clothing can be simply printed on demand and even discarded casually afterward. 

A closet full of clothing could well become a thing of the past.

This Spacesuit for Exploring Mars Is a Form-Fitting Math Problem



MIT Professor Dava Newman is a fashion designer to the stars and while you won't see her work on the red carpet, all the most fashionable space explorers will be wearing her designs when they set foot on the red planet. Photo: Dava Newman


In science fiction, from 2001: A Space Odyssey to Ender’s Game, astronauts zip around zero-g environments clad in stylish, skin-tight spacesuits. In reality, outfits designed for outer space are bulky, hard to maneuver, and have all the charm of adult diapers. Even their name, Extravehicular Mobility Units, or EMUs, is clumsy.


Enter Dava Newman, fashion designer to the stars. You won’t see her work on the red carpet, but if this MIT professor has her way, all the most fashionable space explorers will be wearing her designs when they set foot on the red planet.


A thousand feet of ribbing is held in place with over 140,000 stitches.
For a mission to Mars to succeed, off-world explorers desperately need a new wardrobe to deal with the planet’s unique challenges. In humanity’s entire spacefaring existence, there have been 514 extravehicular space walks, but a single, multi-year mission to Mars will require over 1,000.

On the ground, astronauts will be expected to explore extreme environments like the Olympus Mons, a volcano the size of Arizona that’s nearly three times the height of Mount Everest. Suits will need to be easier to don and doff, provide greater freedom of movement, and be comfortable for long haul journeys. Newman’s solution is called theBioSuit and looks a bit like a superhero’s costume, but it’s actually just a form-fitting math problem.

In order to survive in the vacuum of space, human bodies require pressure. EMUs solve this problem by creating a pressurized vessel, sort of like a mini airplane cabin. By contrast, the BioSuit employs semi-rigid ribs traced across the body to provide mechanical counterpressure while letting the wearer retain a full range of movement.

Providing that life-preserving pressure requires over a thousand feet of ribbing, which is threaded through the suit at critical strain points and held in place with over 140,000 stitches. Gold fibers are woven through the outfit and paired with biometric sensors to collect data that helps mission control keep tabs on the crew. The snug unis protect astronauts, provide greater freedom of movement and more physically taxing experiments, and importantly, make the astronauts look more like characters in a J.J. Abrams movie than some doofy educational film.
“Aesthetics are a critical component of design and engineering,” says Newman. “I still think space exploration is the most exciting thing going on, and heroic-looking suits might help make more of a human connection for folks.”
Beyond its good looks, the BioSuit will also be safer. If a micrometorite or piece of space junk pierced an EMU, the suit would rapidly depressurize, leaving the astronaut out of luck in outer space, but the BioSuit could be patched with next-gen duct tape.

Newman has filed a number of patents on her invention, but is quick to share credit with earlier thinkers in the field. Dr. Arthur S. Iberall developed a similar concept for NASA in the 1960s, and a textbook from 1882 called Lehrbuch der systematischen und topographischen Anatomie provided Newman with the basic math that dictates the placement of the ribs that create the suit’s soft exoskeleton. These older ideas served as a launchpad while modern innovations like shape memory alloys, passive-elastic materials, and electro-spun fabrics served as the fuel.


Newman’s team has tested the suits by exploring the alien terrain near Area 51.
3-D tools have also been critically important to the project. Scanners allow the design team to make perfectly fit gear for each member of the flight crew. “Custom-designed individual suits are critical in my opinion since we want to facilitate extreme exploration,” says Newman. “And the best way I know how to improve performance is to provide astronaut explorers with maximum mobility while requiring the least amount of energy expenditure.”

Meanwhile, 3-D printers have advanced to levels that would have been unimaginable at the start. “The great thing about 3-D printing today is that we can use it for concepts, almost like sketch models, early in our design process rather than 3-D printing for only final designs, as we did in the past,” says Newman.

Newman’s team has tested the suits by donning the futuristic garb and exploring the alien terrain near Area 51 in the Southwest. They also developed a custom robot that can simulate a full range of human movement and withstand the uncomfortable prodding required to ensure a proper fit. While they haven’t sent the outfit to space, the group is lucky to have a focus group of astronauts, including moon walker Buzz Aldrin, to provide feedback.

Science comes first, but Newman isn’t skimping on style. While busy bringing dozens of technologies to bear and developing the complex mathematics that drive the suit’s functionality, Newman sought out design partnerships with Dainese, an Italian firm that makes high-performance gear for motorcyclists and extreme athletes, as well as a contingent of RISD students to ensure that the suits are flattering as well as functional. “A former NASA Administrator was quoted as saying ‘anytime you can tell a female astronaut from a male astronaut in a spacesuit, that’s a good thing.’ I tend to agree,” says Newman.


There’s no final countdown for the suits to become available. Newman has spent years refining the designs, testing new materials in simulations, and developing new fabrication techniques—in fact, many of her most recent publications have focused more on advances in testing technology than extravehicular missions. The majority of the work is completed on the mechanical aspects of the suit, but the life support systems still need to be integrated before it can be tested in the unforgiving vacuum of space, a process which will require significant funding. In the past NASA has funded the development of the research, but perhaps Virgin Galactic or Jeff Bezos’ Blue Origin might want spiffy threads for their stewards?

Even if the flight plan for Mars is delayed indefinitely, all of Newman’s R&D will have down to Earth applications. Already, some of the innovations are being applied to treatments for children with cerebral palsy and seniors with severe balance impediments. Ultimately, Newman hopes we can design our way towards a world devoid of disability.


No comments: