The next agricultural revolution will make ample use
of robots able to pick individual fruits from trees and vines. Everything else we already do quite
well. Going into space with a modified
Dyson Sphere or perhaps we need to call it an Arclein - Dyson Sphere since his
idea was aimed at encasing actual Stars and needed new laws of physics, will
provide as much agricultural capacity as we desire.
The real technical problem there is simply
protection from external radiation storms and this appears to have been solved
by simply hollowing out moons and asteroids and building the rotating rim
system inside. It is certainly the
approach we could use now if we chose.
We still need real lift capacity, but I think that
my MFEV will be possible inside three decades while real work on gravity is
long overdue.
Space Exploration Can
Drive the Next Agricultural Revolution
By Nikolaus Correll,
University of Colorado | December 25, 2013
Last Updated: December 26, 2013 11:11 am
http://www.theepochtimes.com/n3/417130-space-exploration-can-drive-the-next-agricultural-revolution/
Habitation of outer space needs solving air,
water, energy and food supplies within a tight space. And this isn’t a problem
of an apocalyptic, remote future. Developing this technology addresses some of
the grand challenges to our civilization. Space exploration can be one of the
main drivers to revolutionize sustainable agriculture on Earth for many
reasons.
[ oh really. Try
starting with a giant balloon inside which one rigs an axle and multiple - rim
system suitable suspended with cables.
With little effort we can spin up to one g gravity on the outer rim and
create a multifloor architecture fed with supplies through the axle. The available space is no longer tight at all
and is in fact ample. As well a natural
internal climate sets up with the bulk of the moisture in the rim area awaiting
management. Now use your imagination to
finesse the rest. – arclein ]
First, so far agriculture has not been a driver
of innovation in automation, but a beneficent of it. That needs to change. The
current economy promotes increasing the size of farm equipment and producing a
single crop for many years, which are techniques better suited to automation.
Advances in robotics can decrease the detrimental effects of farming by
improving resource management and inter-cropping (that is changing the type of
crop produced). Small-scale robotic platforms can provide each plant with the
required resources as it needs them. This can help agriculture reclaim urban
environments, such as inside buildings or on roofs.
[ growing crops on the
rim becomes no trick at all. You will
have plenty of rim and ample sunlight to access. Multiple growing levels are easily achieved.
– arclein ]
Addressing the challenge of making urban
environments greener is similar to the challenges of solving food production on
a spaceship or in a Mars colony. Solutions will not come from incremental
changes to the current system, but require a disruptive approach – such as the
use of robots.
Second, sustainable agriculture is a systems
challenge that requires advances in renewable energy and integration of
resource management, especially in urban environments or those of a spaceship.
Going to Mars is a “rucksack problem”. Explorers
have to decide on a combination of provisions and tools that allow them to
maximise exploration and minimise their risk of failure. They are limited by
the size of the spaceship. Larger vessels can bring more goods, but also
require larger crews to maintain them, again requiring more resources.
Leaving the Earth is not easy. The launch mass
of a spaceship is limited by fuel constraints. The larger the mass, the more
fuel is needed for lift-off. This limits how long we can sustain ourselves in
space, where we can go and what we can do there.
Calculating the right launch mass and potential
yield has shown that growing food in space becomes advantageous for missions
exceeding two years in space. For shorter missions the additional launch mass
required to grow plants would be better used by bringing additional resources.
An alternative scenario is to launch life support systems to arrive before
humans do. In both cases, automation is necessary because use of humans in
space is inefficient.
On Earth advances in agricultural practices and
transport systems have solved the automation problem in even the most remote
locations. But this approach is about to reach its limit, and may be solutions
from space research can help. For instance, solutions for a sustainable
presence in space need better use of the resources, including efficient
recycling. So food could be grown from waste water and carbon dioxide. Such
technology would have benefits on Earth too.
Bioregenerative life support system for long duration human space missions University of Colorado
Third, NASA’s development of advanced life
support systems is strongly dependent on the perceived value of its mission.
Using space exploration as a driver to solve our most pressing grand
challenges: air, energy, water and food is a strong narrative to gain public
support.
Growing food in space is not a critical
component of missions yet, but will be soon enough. Research in space-based
agriculture should focus on three fronts: increasing our knowledge of in-space
plant growth, solving the key challenges to plant maintenance and understanding
the impact that such kind of living has on humans in the isolation of space.
These three developments are closely related and
all get help from robots. As fully autonomous plant maintenance requires
solutions to a series of hard problems in perception and manipulation, the
initial focus should be on remote operation of the growing process. Devising a
system that solves all the mechanical, user interface and communication
challenges that would allow for sustainably growing plants can serve as the
basis for future automation. This could then motivate its own mission, such as
deploying a greenhouse container to the Moon or Mars.
No comments:
Post a Comment