Showing posts with label solar. Show all posts
Showing posts with label solar. Show all posts

Monday, October 5, 2009

EEStor Revolution



We have posted on the EEStor ultracapacitor development and its apparent iminent debut. Others are also advancing similar protocols and all are optimistic that they can deliver an energy storage device that can store and control sufficient energy to provide personal transportation comparable to present ranges or at least ten to fifteen times better than present electrical storage devices.



Surprisingly the challenge is technically clear. You need capacitor spheres to hold electrical energy and you need a control system. Because you can initially start with large dimensions, the control system can be solved independently and we can presume this was done long ago. So far, so good.



If you can do all that then energy content becomes a case of decreasing the size of the spheres in order to increase the size of the surface area. In fact it must get down to nanometer size to achieve the desired results and apparently this has been accomplished. Thus their claims of iminent deliverability appear creditable baring the usual last minute technical difficulties.



So we are about to have a magnificent super battery as a stock item of mass production. Others will be also producing a comparable product.



Now this has all been focused on the automobile industry. It is way more important than that.



It will completely change the whole business of energy. To start with, it becomes practical and desirable to establish a consumer owned energy production system. This way the consumer avoids the cost of distribution. A simple initial model is an energy efficient house that collects solar energy on a continuous basis. The house collects energy during the day and supplies what is needed during the evening and night. Then as the sun rises, it automatically tops up the automobile draining the storage device in preparation for fresh accumulation.



Surplus power can even be collected by mobile units, completely avoiding the need for grid linkage. We are assuming an efficient energy transfer system but that seems likely also.



The point that I am trying to make here is that this turns everything we have done for the past century on its head. It is already possible to take a home of the grid with some expense. It now becomes convenient and economic.



This also releases a massive amount of energy back to the primary producers for industrial use and that includes much of that energy lost to transmission losses.



So not only are we having a practical electrical automobile protocol, we are getting a practical home energy storage system that naturally promotes the investment in home based energy production that efficiently integrates into the overall energy supply system.

Thursday, July 9, 2009

South Korea Lauches Green Growth Plan

What I fail to understand is why the USA cannot get its head around the simple idea represented by the present actions of South Korea. We clearly need a major expansion of grid energy and the related creation of a continental high power grid system. All of it is suitable for twenty year finance paper and government guarantees to bring in a low interest rate. Done this way, it would cost the taxpayers nothing. Do you think Korea is spending taxpayer’s money?

Adding 2% to the national GDP product would be very welcome over the next five years. It would build thousands of wind mills and perhaps dozens of geothermal plants. I would skip the nuclear and solar does not need the terms because it is building out quickly anyway. Solar thermal plants may need those terms.

Our manufacturing would swiftly recover and even the auto industry would be quickly back to work.

Instead we have band aids to banks unable to lend at all and nationalization for unions who want to discover why British Leyland was such a good deal.

We have two domestic problems to solve over the next five years. We must transition out of the oil industry by at least fifty percent by replacing it with domestic alternatives and we need to provide for a national grid with a huge build out of static power. Those are positive problems that are solved by financing expansion. There is no money in buying houses while letting the banks destroy their customers. Yes it is that crazy.

Do you see any sign that these mutts have got it at all? Send this post to your congressman.

S Korea unveils massive plan for green growth

by Staff WritersSeoul (AFP) July 6, 2009

http://www.terradaily.com/reports/SKorea_unveils_massive_plan_for_green_growth_999.html

South Korea Monday unveiled an 84 billion dollar five-year plan to develop environmentally friendly industries and use them as a growth engine for the wider economy.

The plan, approved at a meeting chaired by President Lee Myung-Bak, aims to transform South Korea into one of the world's seven strongest nations in terms of energy efficiency and green technology investment by 2020.

The government will invest 107 trillion (84.4 billion dollars), or 2.0 percent of gross domestic product every year, over the next five years in an effort to reduce reliance on fossil fuels, Lee's office said.

The scheme will help create up to 1.81 million new jobs and generate about 206 trillion won in economic output, it said.

The government will also boost spending on green technology products such as solar-powered batteries and hybrid vehicles, it said.

Lee called for the public to rally behind the plan.

"Because it will have a great impact on the daily lives of the citizens, I believe every citizen must also participate in the move" towards a greener society, he said.

Asia's fourth largest economy earlier announced a set of measures to reduce greenhouse-gas emissions.

They include creating energy-saving versions of products such as personal computers and displays as well as developing energy-efficient IT service networks including high-speed Internet.

Monday, June 29, 2009

Chris Nelder on Seven Energy Futures

Chris Nelder outlines his take on our options for energy production and conversion over the next few years. Take a look at the chart linked a couple of paragraphs into the article.

However we wish it to be anything but, that is the shape of global fossil fuel utilization over the next century. It really cannot be postponed.

Let me make this as stark as possible. If we lost several millions of barrels of production tomorrow, were do we get it from? The immediate answer is nowhere. We have reached the point in which replacement is not an option. We have actually been there for a long time.

Thirty years ago. We had the Saudi Safety Cushion. It is no longer an option.

The market is responding by releasing a torrent of money on the wind and Solar industries and yes even the nuclear industry. It needs a torrent of money.

Those that have read my many posts on this subject know that I am not despairing and that many options are been explored that will respond well to capital. I personally like the use of cattails for ethanol in particular manly because it employs farming and promises to employ millions throughout the world, even if ethanol is used mostly for transportation fuel.

Chris makes the point that core to our future is for renewables to grow from the present two percent to 86% of the global energy system. This sounds daunting, however present capacity can be doubled every five years of so. What this means is that we will reach 4% in 2015 and 8% in 2020. Yet this also means 16% in 2015, 32% in 2025, and 64% by 2030. This is no trick. Renewables are not limited by fuel availability, and the sheer demand for power makes this technology the easiest to finance business in the world.

Early modest returns that discipline capital spending are eventually replaced by decades of free cash flow against no debt.

The other point that I just made is that every operating facility can replicate itself every five years or so. This gives us the benefit of redoubling. This is not possible with Nuclear so far because we quickly hit the limits of our uranium supply.


7 Paths to Our Energy Future

By Chris Nelder Friday, June 26th, 2009

http://www.energyandcapital.com/newsletter.php?roi=echo3-4306473423-3175351-0d0756612326b6cce8863c3353aea5cf&date=2009-06-26ve

I have dished out a healthy share of criticism about the paths we are taking into the energy future, so perhaps it's time I offered some paths of my own. I will outline them as simply as possible, since the data and thinking behind them could fill a book.

First we must know where we're going.

Credible models show that by the end of this century, essentially all of the fossil fuels on earth will be consumed—oil, natural gas, and coal. Presumably, whatever fuels do remain at that point will be reserved for their highest and most valuable purposes like making crude oil into plastics and pharmaceuticals, not burning it in 15% efficient internal combustion engines.

Consider the following world model for all fossil fuels:

http://images.angelpub.com/2009/26/2401/6-26-09-nelder-chart-1.jpg


Source: "
Olduvai Revisited 2008," The Oil Drum, by Luís de Sousa and Euan Mearns. Cumulative peak is Data sources: Jean Laherrère for natural gas, Energy Watch Group for coal and The Oil Drum for oil.
[This is an exceptional study and I recommend it to my readers!]

By the end of this century then, a mere 90 years from now, we'll need to have an infrastructure that runs exclusively on renewably generated electricity, biofuels, and possibly nuclear energy. That's where we're going.

Fortunately, there is more than enough available renewable energy to meet all of our needs, if we can harness it. Unfortunately, we're starting from a point at which less than 2% of the world's energy comes from renewables like wind, solar and geothermal.

Hydro provides about 6%, and nuclear about 6%, but for reasons too numerous to get into here, some of which my longtime readers have already heard, I don't believe either source will increase much in the future, and both could actually decline.

Our challenge then is to make that 2% fraction grow to replace about 86% of the world's current primary energy, in 90 years or less.

We are currently at peak oil, a short, roughly 5-year plateau which goes into terminal decline around 2012. All fossil fuel energy combined peaks around 2018, less than a decade from now.

All strategies for accommodating the fossil fuel decline require decades to have any significant effect. The now-iconic study "
Peaking of World Oil Production: Impacts, Mitigation, & Risk Management" (Hirsch et al., 2005) demonstrated that it would take at least 20 years of intensive, crash-program mitigation efforts to meet the peak oil challenge gracefully. Another study, "Primary Energy Substitution Models: On the Interaction between Energy and Society," (C. Marchetti, 1977) showed that it generally takes decades to substitute one form of primary energy for another, and 100 years for a given source of energy to achieve 50% market penetration.

Therefore, we are going to have to accomplish most of the renewable energy revolution in a scenario of ever-declining fuel supply. In just 50 years, we'll be working with about half our current energy budget. So in fact we may only have about 50 years to build most of the new renewable energy and efficiency capacity we will need to get us through the end of the century.

Another important factor is that exports will fall off much faster than total supply. (See my article on the
oil export crisis from last year.) Foucher and Brown (2008) have shown that the world's top five oil exporters could approach zero net oil exports by around 2031. Net energy importers like the US could be increasingly starved for fuel as decline sets in and accelerates, and net energy exporters could wind up shouldering much of the burden of new manufacturing. This factor means that we will have to front-load as much of our development as possible.

The final and most important factor is population. The few population models that actually take fossil fuel depletion into account assume that global population increases roughly out to the global fuel peak, and then stabilizes at that level or declines naturally while economic development promotes lower fertility rates and renewables and energy efficiency increase to fill the gap of declining fossil energy. I understand why this assumption is made—because the alternative is too ghastly to contemplate—and for the immediate purpose of this article I will go along with it. I will note however that history and scientific observation of populations suggest some sharp episodes of decline are more likely, and in my estimation we will end this century with a considerably smaller population than anyone forecasts, at some level well below today's.

How, then, can we replace or offset through efficiency at least 40% of our current energy supply with renewables in the next 50 years, while fuel prices are rising and the global economy is flat or shrinking due to a lack of fuel?

Seven Paths to Our Energy Future

A proper model for achieving this goal would be a very large undertaking, the sort of thing that should be done by a team of experts with a budget. (Is anybody at the Department of Energy listening?) But I can identify some key pathways that are, in my estimation, no-brainers. Because the solutions going forward will be quite different for each country, I will limit my recommendations to the US.

1: Rail. Rail should be Priority 1, and should be granted the largest portion of public funding. We should begin as quickly as possible with light urban rail, and work over the next 40 years to build a comprehensive high-speed long-distance rail system.

Rail is by far the most efficient form of overland transportation we know, and moving people out of their cars and freight off the roads will yield real and immediate savings in liquid fuel consumption. Not only will this help alleviate America's need for rapidly declining oil exports, it is a proven, fairly low-tech, sustainable and workable solution that would allow renewably generated electricity to be phased in over time with minimal disruption.

2: Rooftop Solar PV. Utility scale projects like giant solar farms in the desert and giant wind farms in the Midwest (or offshore) all face serious hurdles in siting, permitting, environmental impact, and transmission capability. Rooftop photovoltaic (PV) solar systems face no such issues and can be deployed right now, building capacity incrementally over time. PV has been proven in the field commercially for over 30 years and, speaking as a former residential and small commercial solar designer, I know that it can provide 50-100% of the needs of most small buildings.

Rooftop PV also has a capital advantage. Whereas utility-scale solar and wind projects need to secure large power purchase agreements in order to raise enormous amounts of capital that will be tied up for decades, small rooftop PV systems are purchased outright by the end-users, assisted by ratepayer-funded incentive systems. Simply getting projects done is considerably easier.

From a funding perspective, rooftop PV is arguably one of the easiest sources we can develop, and options are proliferating. Cities like Berkeley and San Jose are offering municipal bonds to finance local projects, which keeps the financing small, local, and low-risk. Third-party financing companies are springing up all over the country, making it possible for home and business owners to put solar on their roofs with no out-of-pocket expenses and pay them off at the same rates or less than they're already paying to utilities, with nearly zero risk to all parties. End-users enjoy an additional benefit of having a known, fixed cost for their future power, even as fossil fuel prices skyrocket.

Another very important advantage is that rooftop PV is distributed, which contributes to the resiliency and robustness of the grid. In most modern neighborhoods, no grid upgrading is needed to support rooftop solar systems. More distributed power generation also means fewer points of failure: a cloud over here is compensated by clear sky one mile away. It also enables micro-islanding, which would allow most of the grid to stay up when there is an outage, instead of taking vast chunks of the country's grid down along with it as we have seen in the recent past.

Utilities also win with rooftop PV, because it means they don't have to spend an enormous amount of effort and money in search of enough clean, green kilowatt-hours to meet their renewable portfolio standards, nor spend it on beefing up their grids. It essentially costs utilities zero to take up energy produced this way; in fact it can be a net benefit to them because the homeowner ends up paying for the new smart meters they plan to deploy across their grids anyway (at a cost of tens of millions of dollars).

Feed-in tariffs (FiTs) that pay a premium for kilowatt-hours generated by rooftop PV have been employed with great and immediate success in Germany and Japan, to the point where both programs will be largely phased out within the first decade. Support for a national FiT in the US is still weak, but I believe it could become a reality if the public were educated about the success it has enjoyed elsewhere in the world.

3: Alternative Vehicles. Since reconfiguring our urban topology around transit and deploying light rail will take decades, we will need some transitional solutions that still allow us to get around in cars for a good many years. All-electric and plug-in hybrid electric vehicles are a two-fer: They can take advantage of growing renewable electricity supply, and they can function as a giant, distributed battery for intermittent renewable sources using vehicle-to-grid (V2G) technology. In time, V2G could provide the final link that allows renewable energy to fully displace fossil fuels.

We will need to begin building the electric vehicle charging infrastructure as quickly as possible to accommodate these new vehicles, but it needn't be any more complicated than deploying a new row of parking meters. This I think is a good and proper use of public funding. The automakers themselves should be able to find adequate funding via the private sector, with perhaps a modicum of federal support for research to jump start next-generation development of batteries and propulsion systems.

Compressed natural gas vehicles are another transitional solution that would take advantage of domestic gas supply while cutting demand for imported crude.

Biofuels may also play a role, although I continue to be skeptical about how much they can truly achieve once net energy (EROI) and food-vs.-fuel tradeoffs are taken into account. Corn ethanol fails these tests, but to the extent that cellulosic biofuels pass them, they could take a substantial bite out of our demand for petroleum. Still, it will take a decade or more to scale it up to significant levels.

Before the global economic downturn, our replacement rate was about 14 million new cars and light trucks per year. We have about 250 million such vehicles now. At that rate (we're well down from it now), it would take 18 years to replace the fleet, but we probably won't maintain that rate while the economy shrinks and fuel prices rise. Therefore we should concentrate on a rapid, near term deployment of alternative vehicles, before it gets prohibitively expensive and difficult to do so, even if they wind up having all the sex appeal of a mass produced WWII Jeep.

Ideally, we will only have to replace a fraction of the current fleet, with the rest of the traffic having been moved to rail.

4: Efficiency. Most of the efficiency gains we can make are thermal: reducing the energy it takes to heat and cool buildings. These gains ultimately translate into less coal and natural gas demand, so they will do little to reduce our demand for oil, which must be our first priority. In the long run however, efficiency must make up for any shortfall in renewable energy production, so it must be pursued continually over many decades.

More efficient regular gasoline and diesel vehicles also belong in this category, and may reduce our dependence on oil if they are sufficiently efficient and the gains aren't nullified by the
Jevons paradox. In my view, anything under 25 MPG is simply pathetic at this point, and undeserving of any federal support. Incentives for more efficient ICE vehicles should be geared to produce the greatest possible gains in fuel economy, not the watered-down "Cash for Clunkers" bill we got, which will ensure another several years' worth of inefficient SUV production.

5: Utility Scale Renewables. Rooftop PV may be able to fill the short-term supply gap if aggressively pursued, but in the long term we'll need every renewable kilowatt-hour we can get. We'll need large solar plants across the Southwest, and huge wind farms in the Midwest and offshore. Geothermal and marine power can also make major contributions in time, but they're babies now, and will need public guarantees and funding to reach the level where they are commercially viable technologies.

6: A Beefier, Smarter Grid. In order to carry all the new renewable power, we're going to need a bigger, more resilient, and smarter grid. The good news is that we already have most of the technologies we need in this area. All that we lack is the will and the funding to put it in place. In the same way that it took federal funding and initiative to create the interstate highway system, the grid will also probably need to be nationalized and its enhancement funded publicly in order to meet this challenge.

A key element of the new grid will be long-distance high-voltage direct current (HVDC) power lines to transmit the power from the large utility scale projects to the cities where it's needed. This must be on the short- to medium-term agenda since it must be ready to take on real capacity within 20 years and be nearly full-blown within 40 years.

7: Keep Drilling. If we back off too much too soon from oil and gas production, it could leave us without adequate or reasonably priced fuel to accomplish this transformation, and sink the entire effort. I think we'll need as much oil and gas (and to a lesser extent, coal) as we can possibly produce in order to pull it off. Just imagine how difficult it will be to produce a solar panel or a large wind turbine using only renewably generated electricity to mine the raw ores, crush them, transport them, smelt them down and turn them into stock, transport them again and turn them into end-products, then transport them a final time and install them. I think it's safe to say that we have no idea how to do all that without liquid petroleum fuels.

The twilight years of hydrocarbon fuels are essentially upon us, but we'll need them more than ever as they peak out and decline. We will have to keep drilling, and the oil business will have to be able to turn a fair profit.

At the same time, I have long maintained that after a nearly a century of commercial operation, the petroleum businesses should be able to get by on its own, without public subsidies of any kind. If that means the price of fuels goes up, then so be it. We're going to have to start paying a fair value for those finite, rapidly disappearing resources some day, and price increases will only encourage efficiency and alternatives.

Just Do It

Turning these conceptual pathways into action will not be easy, and we may be forced into action before we have perfect clarity about where we're going and what it's all going to cost. Yet I have no doubt that if we move on these seven pathways as quickly as possible, we will make progress in the right direction. There will be time to fine-tune it later.

Over the long term, the economics of energy are clearly in favor of renewables. The costs of producing and burning fossil fuels can only increase, and the costs of renewable energy will fall for decades before stabilizing.

Finding the money to rebuild so much of our infrastructure will no doubt be a challenge. But if we're willing to put a $2.5 trillion debt burden on the future to bail out the financial system, and untold trillions more to provide military protection for the oil resources that remain, perhaps it's just a question of priorities. I have no doubt that the money would be better spent on building an energy infrastructure that will actually sustain us.

The successful pathways are the profitable pathways. Think rail, small solar PV, alt vehicles, efficiency, utility renewables, grid, and drill, baby, drill.

Until next time,
Chris

Wednesday, March 25, 2009

Renewable Distributed Energy Generation Markets To Reach 61 Billion Dollars

This study provides hard statistics for the distributed renewable energy market. This is a sector that is not easy to evaluate and measure, so a resource such as this biennial report is invaluable as it reaches out to the industry and acquires the information.

Otherwise we are left to rely on proponent wishful thinking to evaluate such markets and proxies such as manufacturer’s sales.

The solar sector has become, in spite of a not overly favorable cost profile. Direct subsidy and public policy has helped hugely as it must for the introduction of this type of technology.

This tells us that we now have a huge installed base. That base is about to expand radically with the advent of Nanosolar’s panels which will come in at $1.00 per watt, representing a seventy five plus percent drop in cost.

The importance of the present installed base is that all the peripheral tools and components exist, so that a game changer such as Nanosolar needs to merely deliver.

Renewable Distributed Energy Generation Markets To Reach 61 Billion Dollars

by Staff Writers
Boulder CO (SPX) Mar 20, 2009

http://www.solardaily.com/reports/Renewable_Distributed_Energy_Generation_Markets_To_Reach_61_Billion_Dollars_999.html

Global system revenues for sub-utility scale Renewable Distributed Energy Generation (RDEG) grew at a breakneck pace between 2007 and 2008, rising 76% to an estimated $29.9 billion at the end of 2008, according to a new report from Pike Research.
The cleantech market research firm forecasts that the RDEG market will continue strong growth in the coming years, more than doubling in value to $60.6 billion by 2013.
"Renewable distributed energy generation is a sector dominated by small
solar energy installations," says industry analyst David Link.
"
Solar represents approximately 98% of the world market, with small wind power and stationary fuel cells each accounting for about 1%, a mix that we expect to remain constant during the next five years."
In each country where RDEG
technologies have established a foothold, the market is heavily reliant upon government subsidies, most often in the form of feed-in tariffs for solar installations. However, says Link, this reliance will subside in the long term as system installed prices come down, and Pike Research forecasts that these costs will decline at a compound annual rate of -6% between 2008 and 2013.
"Dependence on solar energy subsidies will taper off in Europe during the next 3-5 years," comments Link, "though we expect that horizon to be somewhat further in the U.S., approximately 5-10 years away."
Pike Research's study, "Renewable Distributed Energy Generation", provides a comprehensive overview of the opportunities and challenges associated with deploying RDEG technologies, including solar photovoltaics, small wind, and stationary fuel cells, to meet the world's increasing demand for electricity. The report includes an examination of key market drivers over the coming years, analysis of cost factors for each technology, and detailed market forecasts. An Executive Summary of the report is available for free download on the firm's website.

Here is the link to the exec summary:

http://www.pikeresearch.com/wp-content/uploads/2009/02/rdeg-09-executive-summary.pdf


I have taken the liberty to copy the initial text portion of the summary. The cost of the report is $3500, for those that need it and you well have to register to get the summary in its entirely.

EXECUTIVE SUMMARY

Increasing numbers of countries have committed to reduce greenhouse gas emissions and diversify energy resources to include more renewable sources. The European Union has committed to reduce greenhouse gas emissions by 20% by 2020 compared to 1990 levels, and has even committed to a 30% reduction if global agreement on this target can be reached. Clearly, concerns related to global warming are becoming top of mind for leaders of nations throughout the world.


Meanwhile, the planet has a seemingly insatiable appetite for energy. The world’s electricity generation is expected to increase from 4.2 terawatts (TW) in 1997 to 7 TW by
2030. In addition, the incumbent electricity grid’s centralized power generation model is very inefficient and limited. In most industrialized countries, the overall generation efficiency averages 30-35% by the time electricity reaches the customer and the electricity grid is getting more and more congested. Further, it is estimated that 33% of the global population lives without power today. Extending the electrical grid to reach this customer base is in most cases impractical. Also, with the expanding presence of wireless telecommunications networks to more remote regions of the world, challenges arise as to how to ensure that these networks are properly powered.


One of the ways to answer the challenge of global electricity requirements is with renewable distributed energy generation (RDEG) technologies. RDEG technologies generate power at the point of consumption, avoiding costly and inefficient transmission and distribution. RDEG technologies generate electricity with few if any emissions. They
have the potential to minimize the complications associated with centralized energy sources, giving businesses and consumers more control, agility, and, most importantly, cost savings. However, today the economics of RDEG technologies do not stand on their own. For this reason, governments have stepped in to subsidize their commercial development. Not surprisingly, RDEG technologies are gathering steam in these regions, which tend to be the some of the places with the highest prices for conventional electricity and highest levels of environmental consciousness. Simultaneously, with technological advances and resulting cost reductions, RDEG technologies are generating power at price points that are showing legitimate signs of being competitive with grid- produced electricity. RDEG technologies are comprised of three principal technologies: photovoltaic (PV), small wind, and fuel cells. In breaking down the market, RDEG technologies make up only a fraction of the total electricity generation sources worldwide. In addition, even with impressive growth over the next 20 plus years, the majority of electricity will still be provided by conventional sources such as coal, natural gas, nuclear, and hydroelectric. Of the 4.2 TW of global cumulative electricity generation capacity in 2007, only 4%, or 160 gigawatts (GW), of that total is considered renewable (not counting hydroelectric as renewable). Of the 160 GW of renewable capacity, only 4% is distributed, with the balance being centralized. Even though renewable technologies comprise just 4% of cumulative capacity, they comprise 16% of 168 GW of new capacity additions or approximately 24 GW, and of that only 8% are distributed capacity additions, which is just under 2 GW. Clearly, there would appear to be upside potential for RDEG contribution to the global electricity generation mix.


By far the largest and most important of the three RDEG technologies is distributed PV. The PV industry has experienced rapid growth over the past few years. PV growth has been spearheaded by markets such as Germany, Japan, Spain, and the U.S. Remaining countries in the European Union are starting to pick up strong momentum as well. Emerging markets in India and China show promise in the longer term. Of all the opportunities in PV, the most compelling growth potential lies in decentralized electricity
generation, whether small rooftop or large commercial installations. PV has the advantage of being truly modular, as it can reach cost efficiencies with installations that are just a few kilowatts (kW) to 20 MW or even 200 MW. For the purposes of this report, distributed PV is considered to be those systems less than 20 MW in size, where electricity does not pass through the traditional transmission and distribution system prior to being used. The estimated size of the distributed PV market in 2008 was 3.6 GW, and it is expected to grow to 9.7 GW by 2013, representing a compound annual growth rate (CAGR)% of 22%. This translates into a market with a dollar value of $30B in 2008 that will grow to nearly $60B by 2013, representing a CAGR% of 15%.


Although it is an important part of the solution, small wind is likely to remain a niche technology for the foreseeable future. It is most often used in concert with another energy
source, such as PV, diesel generation, or battery backup power. With the exception of the
U.S. and U.K., small wind has not benefited from strong government subsidies or other support, and even the programs in those countries have been lacking in comparison to what has been extended to PV or large wind installations. However, a surge in demand for small wind in the U.S. is likely as a result of the recently enacted 30% uncapped dollar for dollar tax credit. The estimated size of the small wind market in 2008 was 38 MW, and it is expected to grow to 115 MW by 2013, representing a CAGR% of 25%. This translates into a market with a dollar value of $165M in 2008 that will grow to nearly $412M by 2013, representing a CAGR% of 20%.


Stationary fuel cells offer enormous long-term potential. They offer a clean, efficient source of electricity and range in size from 1 kW up to 10 MW or more. With reformer technology, fuel cells are able to tap into established or accessible sources of fuels such as natural gas, and they can run off of various other fuels including biofuels and gases that are by-products of adjacent industrial processes. With cogeneration or combined heat and power, efficiencies improve dramatically from 40–50% up to as high as 85%. However, cost issues make the technologies’ long-term potential difficult to predict. In order for costs to come down, volumes will have to increase. However, in order for volumes to materialize, costs will need to be reduced substantially. Without uniform government subsidy programs, it is unclear if or when that tipping point may occur. The estimated size of the fuel cell market in 2008 was 38 MW, and it is expected to grow to 219 MW by 2013, representing a CAGR% of 33%. This translates into a market with a dollar value of $242M in 2008 that will grow to nearly $716M by 2013, representing a CAGR% of 24%.