Showing posts with label fossil fuels. Show all posts
Showing posts with label fossil fuels. Show all posts

Friday, January 22, 2010

Variable Truths On Wind







We revisit this particular debate.  At present, enlarging connectivity is a best strategy with the current state of the technology.  However, I think that industrial grade energy storage and electric car storage is almost upon us.  Once that is added to the mix, this issue simply goes away.

 

A previous post also noted that the advent or cheap solar power nicely compliments both the wind power profile and consumer demand.  Again adding storage makes all problems go away.

 

It is still impressive that the mega build out in Europe has been so successively integrated into their power grid and this makes waiting for the pending fixes to come on stream completely unnecessary.

 

Wind is working, and solar is now cheap enough to also compete directly.  Since neither requires any fuel whatsoever to operate, they will necessarily dominate the power grid needed for the electrification of transport.  It will always be cheaper to have local production to support local demand.

 

And no one objects to a windmill storing up power for his and his neighbors’ cars.

 

Variable truths on wind

 

http://environmentalresearchweb.org/blog/2010/01/variable-truths-on-wind.html


The debate over how to deal with the variable energy output from wind turbines continues to rumble on. Some say that, when wind availability is low, there will be a need for extensive back up from conventional plant to maintain grid reliability. However, this backup may already exist: we have a lot of gas-fired capacity, much of which is used regularly, on a daily basis, to balance variations in conventional supply and in demand. Balancing wind variations means this will just have to be used a few times more often each year, adding a small cost penalty and undermining the carbon savings from using wind very slightly. But some say we will need much more that that. A report from Parsons Brinckerhoff (PB) claims that “the current mix of generating plant will be unable to ensure reliable electricity supply with significantly more than 10 GW of wind capacity. For larger wind capacity to be managed successfully, up to 10 GW of fast response generating plant or controllable load will be needed to balance the electricity system”.
www.pbpoweringthefuture.com


“Controllable load” includes the idea of having interactive smart grids which can switch off some devices when demand is high or renewable supplies are low.
However even if that option is available, some say that, with more wind on the grid, to meet peak demand, we will still need more backup plants than we have. By contrast, wind energy consultant David Milborrow claims we have enough, and that some fossil-fired plants can actually be retired when wind capacity is added. That depends on the “capacity credit” of wind – how much of the wind plant capacity can be relied on statistically to meet peak demand. Milborrow puts the capacity credit of wind at around 30% with low levels wind on the grid, falling to 15% at high levels (at say 40% wind on the grid). That indicates how much fossil plant can be replaced. 

PB see it very differently: “A high penetration of intermittent renewable generation drastically reduces the baseload regime, undermining the economic case for more-efficient plant types with lower carbon emissions.”
Milborow admits that balancing wind variations has the effect of reducing the load factor for thermal plant, but says that this only costs ~£2.5/MWh at 20% wind, or ~ £6/MWh at 40%. PB will have none of this: “Very high early penetration of wind generation is likely to have adverse effects on the rest of the generating fleet, undermining the benefits of an increased contribution of renewable electricity.”
PB also seems to slam the door on a possible way out, importing power from continental Europe, the wider footprint then helping to balance variations across a much larger geographical area. It says: “Electricity interconnection with mainland Europe would offer some fast-response capability, but would be unlikely to offer predictable support. Without additional fast-response balancing facilities, significant numbers of UK electricity consumers could regularly experience interruptions or a drop in voltage.”
Addressing the interconnector issue, among others, TradeWind, a European project funded under the EU’s Intelligent Energy-Europe Programme, looked at the maximal and reliable integration of wind power in Trans European power markets. It used European wind power time series to calculate the effect of geographical aggregation on wind’s contribution to generation. And it looked ahead to a very large future programme, with its 2020 Medium scenario involving 200 GW – a 12% pan-EU wind power penetration. It found that aggregating wind energy production from multiple countries strongly increased the capacity credit. www.trade-wind.eu

It also noted that “load” and wind energy are positively correlated – improving the capacity factor – the degree to which energy output matches energy demand. For the 2020 Medium scenario the countries studied showed an average annual wind capacity factor of 23–25 %, rising to 30–40 %, when considering power production during the 100 highest peak load situations – in almost all the cases studied, it was found that wind generation produces more than average during peak load hours.
Given that “the effect of windpower aggregation is the strongest when wind power is shared between all European countries”, cross-EU grid links were seen as vital. If no wind energy is exchanged between European countries, the capacity credit in Europe is 8%, which corresponds to only 16 GW for the assumed 200 GW installed capacity. But since “the wider the countries are geographically distributed, the higher the resulting capacity credit” if Europe is calculated as one wind energy production system and wind energy is distributed across many countries according to individual load profiles, the capacity credit almost doubles to a level of 14%, which it says corresponds to approximately 27 GW of firm power in the system.
Clearly then, with very large wind programmes you do get diminishing returns and need more backup, but it seems that can be offset to some extent by wider interconnectivity – the supergrid idea, linking up renewables sources across the EU.
That is already underway. The UK’s National Grid has agreed with its Norwegian counterpart Statnett to draw up proposals for a £1 bn grid-interconnector grid link-up, to be funded on a 50:50 basis, which could help solve the problem of winds intermittency, given that Norwegian hydro could act as back-up for the UK, in return for electricity from the UK on windy days. As yet no UK landfall site has been indicated, but it could include connection nodes along the route with spurs taking power from offshore wind farms and become the backbone of a new North Sea “supergrid”: the UK and eight other North West EU countries have now agreed to explore interconnector links across the North sea and Irish sea. National Grid said: “Greater interconnection with Europe will be an important tool to help us balance the system with large quantities of variable wind generation in the UK.” 

Wednesday, July 1, 2009

Wildfires Studied

This study refines a lot of what we think we know about wild fires and the like. If there is a take home here, it is that fire requires fuel. Therefore a succession of moist years will produce a large supply of fuel and the resultant firestorm when the inevitable dry year shows up.

It makes the attempt to link wild fires with climate change even sillier that I originally thought. Record breaking forest fires are only possible if preceded by record breaking fuel production.

The only way man can affect the cycle at all is to suppress fires and encourage a build up of fuel until the fire is unstoppable.

Dry summers happen everywhere, even in the Northwest rainforest where I reside. I recall getting real nervous one summer when I lived right beside old growth timber that was loaded with dry waste. It is a little like sitting beside a trail of black powder and playing with matches. Yet we build there.

The arid west is actually as bad as it can get. Every year a batch of homes go up in smoke and it is not a hundred year disaster. A creditable question is obviously how many one hundred year old trees live in your neighborhood. If none whatsoever, you may have a problem.



Pacific Northwest Research Station U.S. Forest Service

News & Information

USFS contact: David L. Peterson, (206) 732-7812,
peterson@fs.fed.us
USFS media assistance: Yasmeen Sands, (360) 753-7716,
ysands@fs.fed.us
UW contact: Jeremy Littell, (206) 221-2997,
jlittell@u.washington.edu
UW media assistance: Sandra Hines, (206) 543-2580, shines@u.washington.edu

In the warming West, climate most significant factor in fanning wildfires’ flames

Study finds that climate’s influence on production, drying of fuels—not higher temperatures or longer fire seasons alone—critical determinant of Western wildfire burned area

PORTLAND, Ore. June 26, 2009. The recent increase in area burned by wildfires in the Western United States is a product not of higher temperatures or longer fire seasons alone, but a complex relationship between climate and fuels that varies among different ecosystems, according to a study conducted by U.S. Forest Service and university scientists. The study is the most detailed examination of wildfire in the United States to date and appears in the current issue of the journal Ecological Applications.

“We found that what matters most in accounting for large wildfires in the Western United States is how climate influences the build up—or production—and drying of fuels,” said Jeremy Littell, a research scientist with the University of Washington’s Climate Impacts Group and lead investigator of the study. “Climate affects fuels in different ecosystems differently, meaning that future wildfire size and, likely, severity depends on interactions between climate and fuel availability and production.”

To explore climate-fire relationships, the scientists used fire data from 1916 to 2003 for 19 ecosystem types in 11 Western States to construct models of total wildfire area burned. They then compared these fire models with monthly state divisional climate data.

The study confirmed what scientists have long observed: that low precipitation and high temperatures dry out fuels and result in significant fire years, a pattern that dominates the northern and mountainous portions of the West. But it also provided new insight on the relationship between climate and fire, such as Western shrublands’ and grasslands’ requirement for high precipitation one year followed by dry conditions the next to produce fuels sufficient to result in large wildfires.
The study revealed that climate influences the likelihood of large fires by controlling the drying of existing fuels in forests and the production of fuels in more arid ecosystems. The influence of climate leading up to a fire season depends on whether the ecosystem is more forested or more like a woodland or shrubland.

“These data tell us that the effectiveness of fuel reductions in reducing area burned may vary in different parts of the country,” said David L. Peterson, a research biologist with the Forest Service’s Pacific Northwest Research Station and one of the study’s authors. “With this information, managers can design treatments appropriate for specific climate-fire relationships and prioritize efforts where they can realize the most benefit.”

Findings from the study suggest that, as the climate continues to warm, more area can be expected to burn, at least in northern portions of the West, corroborating what researchers have projected in previous studies. In addition, cooler, wetter areas that are relatively fire-free today, such as the west side of the Cascade Range, may be more prone to fire by mid-century if climate projections hold and weather becomes more extreme

Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003

Jeremy S. Littell
1,2,5, Donald McKenzie1,3, David L. Peterson3, and Anthony L. Westerling4,6

1Climate Impacts Group, Joint Institute for the Study of the Atmosphere and Ocean and Center for Science in the Earth System (JISAO/CSES), University of Washington, Box 355672, Seattle, Washington 98195-5672 USA

2Fire and Mountain Ecology Laboratory, College of Forest Resources, University of Washington, Box 352100, Seattle, Washington 98195-2100 USA

3USDA Forest Service, Pacific Northwest Research Station, 400 North 34th Street, Suite 201, Seattle, Washington 98103 USA

4Climate Research Division, Scripps Institution of Oceanography, University of California, San Diego, Mail Stop 0224, 9500 Gilman Drive, La Jolla, California 92093 USA

The purpose of this paper is to quantify climatic controls on the area burned by fire in different vegetation types in the western United States. We demonstrate that wildfire area burned (WFAB) in the American West was controlled by climate during the 20th century (1916–2003). Persistent ecosystem-specific correlations between climate and WFAB are grouped by vegetation type (ecoprovinces). Most mountainous ecoprovinces exhibit strong year-of-fire relationships with low precipitation, low Palmer drought severity index (PDSI), and high temperature. Grass- and shrub-dominated ecoprovinces had positive relationships with antecedent precipitation or PDSI. For 1977–2003, a few climate variables explain 33–87% (mean = 64%) of WFAB, indicating strong linkages between climate and area burned. For 1916–2003, the relationships are weaker, but climate explained 25–57% (mean = 39%) of the variability. The variance in WFAB is proportional to the mean squared for different data sets at different spatial scales. The importance of antecedent climate (summer drought in forested ecosystems and antecedent winter precipitation in shrub and grassland ecosystems) indicates that the mechanism behind the observed fire–climate relationships is climatic preconditioning of large areas of low fuel moisture via drying of existing fuels or fuel production and drying. The impacts of climate change on fire regimes will therefore vary with the relative energy or water limitations of ecosystems. Ecoprovinces proved a useful compromise between ecologically imprecise state-level and localized gridded fire data. The differences in climate–fire relationships among the ecoprovinces underscore the need to consider ecological context (vegetation, fuels, and seasonal climate) to identify specific climate drivers of WFAB. Despite the possible influence of fire suppression, exclusion, and fuel treatment, WFAB is still substantially controlled by climate. The implications for planning and management are that future WFAB and adaptation to climate change will likely depend on ecosystem-specific, seasonal variation in climate. In fuel-limited ecosystems, fuel treatments can probably mitigate fire vulnerability and increase resilience more readily than in climate-limited ecosystems, in which large severe fires under extreme weather conditions will continue to account for most area burned.

Monday, June 29, 2009

Chris Nelder on Seven Energy Futures

Chris Nelder outlines his take on our options for energy production and conversion over the next few years. Take a look at the chart linked a couple of paragraphs into the article.

However we wish it to be anything but, that is the shape of global fossil fuel utilization over the next century. It really cannot be postponed.

Let me make this as stark as possible. If we lost several millions of barrels of production tomorrow, were do we get it from? The immediate answer is nowhere. We have reached the point in which replacement is not an option. We have actually been there for a long time.

Thirty years ago. We had the Saudi Safety Cushion. It is no longer an option.

The market is responding by releasing a torrent of money on the wind and Solar industries and yes even the nuclear industry. It needs a torrent of money.

Those that have read my many posts on this subject know that I am not despairing and that many options are been explored that will respond well to capital. I personally like the use of cattails for ethanol in particular manly because it employs farming and promises to employ millions throughout the world, even if ethanol is used mostly for transportation fuel.

Chris makes the point that core to our future is for renewables to grow from the present two percent to 86% of the global energy system. This sounds daunting, however present capacity can be doubled every five years of so. What this means is that we will reach 4% in 2015 and 8% in 2020. Yet this also means 16% in 2015, 32% in 2025, and 64% by 2030. This is no trick. Renewables are not limited by fuel availability, and the sheer demand for power makes this technology the easiest to finance business in the world.

Early modest returns that discipline capital spending are eventually replaced by decades of free cash flow against no debt.

The other point that I just made is that every operating facility can replicate itself every five years or so. This gives us the benefit of redoubling. This is not possible with Nuclear so far because we quickly hit the limits of our uranium supply.


7 Paths to Our Energy Future

By Chris Nelder Friday, June 26th, 2009

http://www.energyandcapital.com/newsletter.php?roi=echo3-4306473423-3175351-0d0756612326b6cce8863c3353aea5cf&date=2009-06-26ve

I have dished out a healthy share of criticism about the paths we are taking into the energy future, so perhaps it's time I offered some paths of my own. I will outline them as simply as possible, since the data and thinking behind them could fill a book.

First we must know where we're going.

Credible models show that by the end of this century, essentially all of the fossil fuels on earth will be consumed—oil, natural gas, and coal. Presumably, whatever fuels do remain at that point will be reserved for their highest and most valuable purposes like making crude oil into plastics and pharmaceuticals, not burning it in 15% efficient internal combustion engines.

Consider the following world model for all fossil fuels:

http://images.angelpub.com/2009/26/2401/6-26-09-nelder-chart-1.jpg


Source: "
Olduvai Revisited 2008," The Oil Drum, by Luís de Sousa and Euan Mearns. Cumulative peak is Data sources: Jean Laherrère for natural gas, Energy Watch Group for coal and The Oil Drum for oil.
[This is an exceptional study and I recommend it to my readers!]

By the end of this century then, a mere 90 years from now, we'll need to have an infrastructure that runs exclusively on renewably generated electricity, biofuels, and possibly nuclear energy. That's where we're going.

Fortunately, there is more than enough available renewable energy to meet all of our needs, if we can harness it. Unfortunately, we're starting from a point at which less than 2% of the world's energy comes from renewables like wind, solar and geothermal.

Hydro provides about 6%, and nuclear about 6%, but for reasons too numerous to get into here, some of which my longtime readers have already heard, I don't believe either source will increase much in the future, and both could actually decline.

Our challenge then is to make that 2% fraction grow to replace about 86% of the world's current primary energy, in 90 years or less.

We are currently at peak oil, a short, roughly 5-year plateau which goes into terminal decline around 2012. All fossil fuel energy combined peaks around 2018, less than a decade from now.

All strategies for accommodating the fossil fuel decline require decades to have any significant effect. The now-iconic study "
Peaking of World Oil Production: Impacts, Mitigation, & Risk Management" (Hirsch et al., 2005) demonstrated that it would take at least 20 years of intensive, crash-program mitigation efforts to meet the peak oil challenge gracefully. Another study, "Primary Energy Substitution Models: On the Interaction between Energy and Society," (C. Marchetti, 1977) showed that it generally takes decades to substitute one form of primary energy for another, and 100 years for a given source of energy to achieve 50% market penetration.

Therefore, we are going to have to accomplish most of the renewable energy revolution in a scenario of ever-declining fuel supply. In just 50 years, we'll be working with about half our current energy budget. So in fact we may only have about 50 years to build most of the new renewable energy and efficiency capacity we will need to get us through the end of the century.

Another important factor is that exports will fall off much faster than total supply. (See my article on the
oil export crisis from last year.) Foucher and Brown (2008) have shown that the world's top five oil exporters could approach zero net oil exports by around 2031. Net energy importers like the US could be increasingly starved for fuel as decline sets in and accelerates, and net energy exporters could wind up shouldering much of the burden of new manufacturing. This factor means that we will have to front-load as much of our development as possible.

The final and most important factor is population. The few population models that actually take fossil fuel depletion into account assume that global population increases roughly out to the global fuel peak, and then stabilizes at that level or declines naturally while economic development promotes lower fertility rates and renewables and energy efficiency increase to fill the gap of declining fossil energy. I understand why this assumption is made—because the alternative is too ghastly to contemplate—and for the immediate purpose of this article I will go along with it. I will note however that history and scientific observation of populations suggest some sharp episodes of decline are more likely, and in my estimation we will end this century with a considerably smaller population than anyone forecasts, at some level well below today's.

How, then, can we replace or offset through efficiency at least 40% of our current energy supply with renewables in the next 50 years, while fuel prices are rising and the global economy is flat or shrinking due to a lack of fuel?

Seven Paths to Our Energy Future

A proper model for achieving this goal would be a very large undertaking, the sort of thing that should be done by a team of experts with a budget. (Is anybody at the Department of Energy listening?) But I can identify some key pathways that are, in my estimation, no-brainers. Because the solutions going forward will be quite different for each country, I will limit my recommendations to the US.

1: Rail. Rail should be Priority 1, and should be granted the largest portion of public funding. We should begin as quickly as possible with light urban rail, and work over the next 40 years to build a comprehensive high-speed long-distance rail system.

Rail is by far the most efficient form of overland transportation we know, and moving people out of their cars and freight off the roads will yield real and immediate savings in liquid fuel consumption. Not only will this help alleviate America's need for rapidly declining oil exports, it is a proven, fairly low-tech, sustainable and workable solution that would allow renewably generated electricity to be phased in over time with minimal disruption.

2: Rooftop Solar PV. Utility scale projects like giant solar farms in the desert and giant wind farms in the Midwest (or offshore) all face serious hurdles in siting, permitting, environmental impact, and transmission capability. Rooftop photovoltaic (PV) solar systems face no such issues and can be deployed right now, building capacity incrementally over time. PV has been proven in the field commercially for over 30 years and, speaking as a former residential and small commercial solar designer, I know that it can provide 50-100% of the needs of most small buildings.

Rooftop PV also has a capital advantage. Whereas utility-scale solar and wind projects need to secure large power purchase agreements in order to raise enormous amounts of capital that will be tied up for decades, small rooftop PV systems are purchased outright by the end-users, assisted by ratepayer-funded incentive systems. Simply getting projects done is considerably easier.

From a funding perspective, rooftop PV is arguably one of the easiest sources we can develop, and options are proliferating. Cities like Berkeley and San Jose are offering municipal bonds to finance local projects, which keeps the financing small, local, and low-risk. Third-party financing companies are springing up all over the country, making it possible for home and business owners to put solar on their roofs with no out-of-pocket expenses and pay them off at the same rates or less than they're already paying to utilities, with nearly zero risk to all parties. End-users enjoy an additional benefit of having a known, fixed cost for their future power, even as fossil fuel prices skyrocket.

Another very important advantage is that rooftop PV is distributed, which contributes to the resiliency and robustness of the grid. In most modern neighborhoods, no grid upgrading is needed to support rooftop solar systems. More distributed power generation also means fewer points of failure: a cloud over here is compensated by clear sky one mile away. It also enables micro-islanding, which would allow most of the grid to stay up when there is an outage, instead of taking vast chunks of the country's grid down along with it as we have seen in the recent past.

Utilities also win with rooftop PV, because it means they don't have to spend an enormous amount of effort and money in search of enough clean, green kilowatt-hours to meet their renewable portfolio standards, nor spend it on beefing up their grids. It essentially costs utilities zero to take up energy produced this way; in fact it can be a net benefit to them because the homeowner ends up paying for the new smart meters they plan to deploy across their grids anyway (at a cost of tens of millions of dollars).

Feed-in tariffs (FiTs) that pay a premium for kilowatt-hours generated by rooftop PV have been employed with great and immediate success in Germany and Japan, to the point where both programs will be largely phased out within the first decade. Support for a national FiT in the US is still weak, but I believe it could become a reality if the public were educated about the success it has enjoyed elsewhere in the world.

3: Alternative Vehicles. Since reconfiguring our urban topology around transit and deploying light rail will take decades, we will need some transitional solutions that still allow us to get around in cars for a good many years. All-electric and plug-in hybrid electric vehicles are a two-fer: They can take advantage of growing renewable electricity supply, and they can function as a giant, distributed battery for intermittent renewable sources using vehicle-to-grid (V2G) technology. In time, V2G could provide the final link that allows renewable energy to fully displace fossil fuels.

We will need to begin building the electric vehicle charging infrastructure as quickly as possible to accommodate these new vehicles, but it needn't be any more complicated than deploying a new row of parking meters. This I think is a good and proper use of public funding. The automakers themselves should be able to find adequate funding via the private sector, with perhaps a modicum of federal support for research to jump start next-generation development of batteries and propulsion systems.

Compressed natural gas vehicles are another transitional solution that would take advantage of domestic gas supply while cutting demand for imported crude.

Biofuels may also play a role, although I continue to be skeptical about how much they can truly achieve once net energy (EROI) and food-vs.-fuel tradeoffs are taken into account. Corn ethanol fails these tests, but to the extent that cellulosic biofuels pass them, they could take a substantial bite out of our demand for petroleum. Still, it will take a decade or more to scale it up to significant levels.

Before the global economic downturn, our replacement rate was about 14 million new cars and light trucks per year. We have about 250 million such vehicles now. At that rate (we're well down from it now), it would take 18 years to replace the fleet, but we probably won't maintain that rate while the economy shrinks and fuel prices rise. Therefore we should concentrate on a rapid, near term deployment of alternative vehicles, before it gets prohibitively expensive and difficult to do so, even if they wind up having all the sex appeal of a mass produced WWII Jeep.

Ideally, we will only have to replace a fraction of the current fleet, with the rest of the traffic having been moved to rail.

4: Efficiency. Most of the efficiency gains we can make are thermal: reducing the energy it takes to heat and cool buildings. These gains ultimately translate into less coal and natural gas demand, so they will do little to reduce our demand for oil, which must be our first priority. In the long run however, efficiency must make up for any shortfall in renewable energy production, so it must be pursued continually over many decades.

More efficient regular gasoline and diesel vehicles also belong in this category, and may reduce our dependence on oil if they are sufficiently efficient and the gains aren't nullified by the
Jevons paradox. In my view, anything under 25 MPG is simply pathetic at this point, and undeserving of any federal support. Incentives for more efficient ICE vehicles should be geared to produce the greatest possible gains in fuel economy, not the watered-down "Cash for Clunkers" bill we got, which will ensure another several years' worth of inefficient SUV production.

5: Utility Scale Renewables. Rooftop PV may be able to fill the short-term supply gap if aggressively pursued, but in the long term we'll need every renewable kilowatt-hour we can get. We'll need large solar plants across the Southwest, and huge wind farms in the Midwest and offshore. Geothermal and marine power can also make major contributions in time, but they're babies now, and will need public guarantees and funding to reach the level where they are commercially viable technologies.

6: A Beefier, Smarter Grid. In order to carry all the new renewable power, we're going to need a bigger, more resilient, and smarter grid. The good news is that we already have most of the technologies we need in this area. All that we lack is the will and the funding to put it in place. In the same way that it took federal funding and initiative to create the interstate highway system, the grid will also probably need to be nationalized and its enhancement funded publicly in order to meet this challenge.

A key element of the new grid will be long-distance high-voltage direct current (HVDC) power lines to transmit the power from the large utility scale projects to the cities where it's needed. This must be on the short- to medium-term agenda since it must be ready to take on real capacity within 20 years and be nearly full-blown within 40 years.

7: Keep Drilling. If we back off too much too soon from oil and gas production, it could leave us without adequate or reasonably priced fuel to accomplish this transformation, and sink the entire effort. I think we'll need as much oil and gas (and to a lesser extent, coal) as we can possibly produce in order to pull it off. Just imagine how difficult it will be to produce a solar panel or a large wind turbine using only renewably generated electricity to mine the raw ores, crush them, transport them, smelt them down and turn them into stock, transport them again and turn them into end-products, then transport them a final time and install them. I think it's safe to say that we have no idea how to do all that without liquid petroleum fuels.

The twilight years of hydrocarbon fuels are essentially upon us, but we'll need them more than ever as they peak out and decline. We will have to keep drilling, and the oil business will have to be able to turn a fair profit.

At the same time, I have long maintained that after a nearly a century of commercial operation, the petroleum businesses should be able to get by on its own, without public subsidies of any kind. If that means the price of fuels goes up, then so be it. We're going to have to start paying a fair value for those finite, rapidly disappearing resources some day, and price increases will only encourage efficiency and alternatives.

Just Do It

Turning these conceptual pathways into action will not be easy, and we may be forced into action before we have perfect clarity about where we're going and what it's all going to cost. Yet I have no doubt that if we move on these seven pathways as quickly as possible, we will make progress in the right direction. There will be time to fine-tune it later.

Over the long term, the economics of energy are clearly in favor of renewables. The costs of producing and burning fossil fuels can only increase, and the costs of renewable energy will fall for decades before stabilizing.

Finding the money to rebuild so much of our infrastructure will no doubt be a challenge. But if we're willing to put a $2.5 trillion debt burden on the future to bail out the financial system, and untold trillions more to provide military protection for the oil resources that remain, perhaps it's just a question of priorities. I have no doubt that the money would be better spent on building an energy infrastructure that will actually sustain us.

The successful pathways are the profitable pathways. Think rail, small solar PV, alt vehicles, efficiency, utility renewables, grid, and drill, baby, drill.

Until next time,
Chris

Thursday, April 30, 2009

Lomborg on Cutting CO2 Emissions

Bjorn Lomborg once again makes a powerful argument questioning our assumptions regarding action on Global Warming and points out that the cost reward ratios for the proposed solutions simply fail to work, while other protocols have better outcomes altogether while appearing counter intuitive.

Been a champion on the implementation of biochar carbon sequestration done in such a way as to fully engage agriculture even at the subsistence level, I obviously do not care much how much carbon is burned so long as an equal amount is sequestered while improving the life way of billions of subsistence farmers.

I am also too well aware that directly tackling CO2 without recruiting the sun is certain to expend as much energy as perhaps originally generated. This is the end of the entropy food chain.

Lombord has published many critical results pertaining to the economics of various strategies and is a recognized authority that is not likely to get things wrong. This is in sharp contrast to the likes of Al Gore who cannot leave an expedient stretched fact alone.

The one take home here is how much the developing world relies on burning carbon. We can waltz into the sunset on nuclear, and geothermal and even solar and happily displace the coal burners. China and India do not have that luxury. They want power now. Later perhaps.

This is going to be just as true for Africa and South America. And there, they are stripping forests to produce charcoal and need coal technology right now.

The really good news is that these countries are passing through the industrial revolution in literally a man’s short lifetime. A child today been fed with food cooked over a charcoal burner, will grow up to mine coal and retire to a home heated with nuclear power.


Op-Ed Contributor

Don’t Waste Time Cutting Emissions
By BJORN LOMBORG

Published: April 24, 2009
Copenhagen
http://www.nytimes.com/2009/04/25/opinion/25lomborg.html?_r=1

WE are often told that tackling global warming should be the defining task of our age — that we must cut emissions immediately and drastically. But people are not buying the idea that, unless we act, the planet is doomed. Several recent polls have revealed Americans’ growing skepticism. Solving global warming has become their lowest policy priority, according to a new Pew survey.

Moreover, strategies to reduce carbon have failed. Meeting in Rio de Janeiro in 1992, politicians from wealthy countries promised to cut emissions by 2000, but did no such thing. In Kyoto in 1997, leaders promised even stricter reductions by 2010, yet emissions have kept increasing unabated. Still, the leaders plan to meet in Copenhagen this December to agree to even more of the same — drastic reductions in emissions that no one will live up to. Another decade will be wasted.

Fortunately, there is a better option: to make low-carbon alternatives like solar and wind energy competitive with old carbon sources. This requires much more spending on research and development of low-carbon energy technology. We might have assumed that investment in this research would have increased when the Kyoto Protocol made fossil fuel use more expensive, but it has not.

Economic estimates that assign value to the long-term benefits that would come from reducing warming — things like fewer deaths from heat and less flooding — show that every dollar invested in quickly making low-carbon energy cheaper can do $16 worth of good. If the Kyoto agreement were fully obeyed through 2099, it would cut temperatures by only 0.3 degrees Fahrenheit. Each dollar would do only about 30 cents worth of good.

The Copenhagen agreement should instead call for every country to spend one-twentieth of a percent of its gross domestic product on low-carbon energy research and development. That would increase the amount of such spending 15-fold to $30 billion, yet the total cost would be only a sixth of the estimated $180 billion worth of lost growth that would result from the Kyoto restrictions.

Kyoto-style emissions cuts can only ever be an expensive distraction from the real business of weaning ourselves off fossil fuels. The fact is, carbon remains the only way for developing countries to work their way out of poverty. Coal burning provides half of the world’s electricity, and fully 80 percent of it in China and India, where laborers now enjoy a quality of life that their parents could barely imagine.

No green energy source is inexpensive enough to replace coal now. Given substantially more research, however, green energy could be cheaper than fossil fuels by mid-century.

Sadly, the old-style agreement planned for Copenhagen this December will have a negligible effect on temperatures. This renders meaningless any declarations of “success” that might be made after the conference. We must challenge the orthodoxy of Kyoto and create a smarter, more realistic strategy.

Bjorn Lomborg is the director of the Copenhagen Consensus Center at Copenhagen Business School and the author of “Cool It: The Skeptical Environmentalist’s Guide to Global Warming.”

Thursday, November 13, 2008

Richard Heinberg on Agricultural Reform

This long article is about a community response to the emerging threat of fuel shortages and possible food crisis. I have been saying much the same thing in my blog over the past year. Where I differ is that the idea of a managerial planning process with the direct power to alter things is the way to go. That is once again merely the road to catastrophic inefficiencies and sheer wastage.

Change must be implemented by first recognizing a desirable outcome, then allowing participants to create that outcome on their own time and money. It is desirable to free the farm community from fossil fuels. Great idea! First off, what will we replace it with? Suppose we decide on ethanol made from cattail starch as the new primary agricultural fuel. Obviously the farmer will throw any other starch into the brew that he has. But cattails allow the utilization of empty wetlands and the like and are several times more productive. Most important, he is adding in place ethanol production to his bag of tools. What the community can do is mandate this fuel as a common priority that all will transition too, thus establishing an interfarm market for the product.

After that it simply a case of getting the equipment makers on side to support the farmers in this endeavor and then phasing in the normal fuel taxes on fossil fuels going to the farm over ten years.

Governmental responsibility is simply to establish a plan of action and make sure that everyone is free to participate in order to dodge the tax stick. Smaller operators will simply buy fuel from their larger neighbors.

All such necessary change is really that easy. And while we are at it, policies that supported the gross expansion of subsidized monoculture are in dire need to be revisited with such thinking in place. The farm lobby has been historically shortsighted and has now failed the community at large by maximizing volume at the expense of quality and manpower and the public purse.

Again I have addressed methods by which that can be redressed in the modern era.



By Richard Heinberg

The only way to way avert a food crisis resulting from oil and natural gas price hikes and supply disruptions while also reversing agriculture's contribution to climate change is to proactively and methodically remove fossil fuels from the food system.
The removal of fossil fuels from the food system is inevitable: maintenance of the current system is simply not an option over the long term. Only the amount of time available for the transition process, and the strategies for pursuing it, can be matters for controversy.
Given the degree to which the modern food system has become dependent on fossil fuels, many proposals for de-linking food and fuels are likely to appear radical. However, efforts toward this end must be judged not by the degree to which they preserve the status quo, but by their likely ability to solve the fundamental challenge that will face us: the need to feed a global population of 7 billion with a diminishing supply of fuels available to fertilize, plow, and irrigate fields and to harvest and transport crops.
If this transition is undertaken proactively and intelligently, there could be many side benefits - more careers in farming, more protection for the environment, less soil erosion, a revitalization of rural culture, and more healthful food for everyone.
Some of this transformation will inevitably be driven by market forces, led simply by the rising price of fossil fuels. However, without planning the transition may be wrenching and destructive, since market forces acting alone could bankrupt farmers while leaving consumers with few or no options. The Transition
To remove fossil fuels from the food system too quickly, before alternative systems are in place, would be catastrophic. Thus the transition process must be a matter for careful consideration and planning. In recent years there has been some debate on the problem of how many people a non-fossil fueled food system can support. The answer is still unclear. But we will certainly find out, because there is likely to be no alternative, given that substitute liquid fuels - including coal-to-liquids, biofuels, tar sands, and shale oil - are all problematic and cannot be relied upon to replace cheap crude oil and natural gas as these deplete.
There are reasons for hope: a recent report on African agriculture from the United Nations Environmental Programme (UNEP) suggests that "organic, small-scale farming can deliver the increased yields which were thought to be the preserve of industrial farming, without the environmental and social damage which that form of agriculture brings with it."
Nevertheless, given that we do not know whether non-fossil fuel agriculture can in fact feed a population now approaching seven billion - and given that current fuels-based agriculture cannot be relied upon to do so for much longer, given the reality of fuel depletion - the prudent path forward would surely be to tie agricultural policy to population policy.
Indeed, coordination will be essential also between agriculture policies and education, economic, transport, energy policies. The food system transition will be comprehensive, and will require integration with all segments and aspects of society.
This document is intended to serve as the basis for the beginning of that planning process. Our aim is to develop a template that can be used to strategically plan the transition of food and farming across the world, region by region, and at all scales (from the farm to the community to the nation), beginning here in the UK.
Elements of Transition
The following are some key strategic elements of the food systems transition process that will need to be addressed at all levels of scale, from the household to the nation and beyond. Re-Localization In recent decades the food systems of Britain and most other nations have become globalized. Food is traded in enormous quantities - and not just luxury foods (such as coffee and chocolate), but staples including wheat, maize, meat, potatoes, and rice.
The globalization of the food system has had advantages: people in wealthy countries now have access to a wide variety of foods at all times, including fruits and vegetables that are out of season (apples in May or asparagus in January), and foods that cannot be grown locally at any time of year (e.g., avocadoes in Scotland). Long-distance transport enables food to be delivered from places of abundance to areas of scarcity. Whereas in previous centuries a regional crop failure might have led to famine, its effects now can be neutralized by food imports.
However, food globalization also creates systemic vulnerability. As fuel prices rise, costs of imported food go up. If fuel supplies were substantially cut off as the result of some transient event, the entire system could fail. A globalized system is also more susceptible to accidental contamination, as we have seen recently with the appearance of toxic melamine in foods from China. The best way to make our food system more resilient against such threats is clear: decentralize and re-localize it.
Re-localization will inevitably occur sooner or later as a result of declining oil production, since there are no alternative energy sources on the horizon that can be scaled up quickly to take the place of petroleum. But if the transition process is to unfold in a beneficial rather than a catastrophic way, it must be planned and coordinated. This will require deliberate effort aimed at building the infrastructure for regional food economies - ones that can support diversified farming and reduce the amount of fossil fuel in the British diet.
Re-localization means producing more basic food necessities locally. No one advocates doing away with food trade altogether: this would hurt both farmers and consumers. Rather, what is needed is a prioritization of production so that lower-value food items (which are typically staple calorie crops) are mostly sourced from close by, with most long-distance trade left to higher-value foods, and especially those that store well.
This decentralization of the food system will result in greater societal resilience in the face of fuel price volatility. Problems of food contamination, when they appear, will be minimized. Meanwhile, revitalization of local food production will help renew local economies. Consumers will enjoy better quality food that is fresher and more seasonal. And transport-related climate impacts will be reduced.
Each nation or region will need to devise its own strategy for re-localizing its food system, based on a thorough initial assessment of vulnerabilities and opportunities. The following are some general suggestions that are likely to be applicable in most instances:
The process will benefit enormously from policy support at both national and regional levels. This could include, for example, the provision of grants to towns and cities to build year-round indoor farmers' markets.
Food-safety regulations should be made appropriate to the scale of production and distribution, so that a small grower selling direct off the farm or at a farmers' market is not regulated as onerously as a multinational food manufacturer. While local food may have safety problems, these will inevitably occur on a smaller scale and will be easier to manage because local food is inherently more traceable and accountable. Governments can require that some minimum percentage of food purchases for schools, hospitals, military bases, and prisons are sourced within 100 miles of the institutions buying the food. Channelling even a small portion of institutional food purchasing to local growers would greatly expand opportunities for regional producers while improving the diet of people whom these institutions feed. Cities and towns can rework their waste management systems so as to collect food scraps that can then be converted to compost, biogas, and livestock feed - which can in turn be made available to local growers.
But government can do only so much. Consumers must develop the habit of preferentially buying locally sourced foods whenever possible, and they can be encouraged in this by "Buy Local" educational literature distributed by retailers - who can also assist by clearly labeling and prominently displaying local products.
Growers themselves must rethink their business strategies. Instead of growing specialty crops for export, they must plan a transition to production of staple foods for local consumption. They must also actively seek local markets for their food. The Community Supported Agriculture (CSA) movement provides a business model that has proven successful in many communities. Small producers can also create informal co-ops to acquire machinery (such as small threshing machines for cereal and oilseed processing or micro hydro turbines for electricity).
The strategy of re-localizing food systems will be more challenging for some nations and regions than others. Given that the food footprint of London encompasses essentially all of England, the challenge for Britain is greater than is the case for many other nations. More urban gardens and even small animal operations (with chickens, ducks, geese, and rabbits) within London and other cities should be encouraged, but even then it will be necessary to source most food from the countryside, delivering it to the city by rail. Thus re-localization should be seen as a process and a general direction of effort, not as an absolute goal.
Energy As society turns away from fossil fuels, the energy balance of farming must once again become net positive. However, the transition process will be complex and problematic. Farms will still need sources of energy for their operations, and will need to provide much or all of that energy for themselves. Meanwhile, farmers could also take advantage of opportunities to export surplus energy to nearby communities as a way of increasing farm income.
Farms must be powered with renewable energy. However, many energy needs on farms - such as fuel for tractors and other machinery - are currently difficult to fill with anything other than liquid fuels, which currently come in the form of diesel or petrol made from crude oil. Farmers should first look for ways to reduce fuel needs through efficiency or replacement of machines with animal power or human labor. This is most likely to be economically feasible in dairy, meat, vegetable, fruit, and nut operations. Where fuel-fed machinery is still required, which is likely to continue being the case for grain production, ethanol or biodiesel made on-site could supplement or replace petroleum. Farmers could aim to apportion one-fifth of their cropland to production of biofuels for their own use.
Many other farm operations require electricity, and this can be generated on-site with wind turbines, solar panels, and micro-hydro turbines. Effort first must be devoted to making operations more energy-efficient. Because these technologies require initial investment and pay for themselves slowly over time, assistance from government and from financial institutions in the form of grants and low-interest loans could be instrumental in helping farmers overcome initial economic hurdles toward energy self-sufficiency.
Eventually farmers are capable of being not just self-sufficient in energy, but of producing surplus energy for surrounding communities. Much of this exported energy is likely to come in the form of biomass - agricultural and forestry waste that can be burned to produce electricity. While farmers can also grow crops for the production of biofuels, the ecological and thermodynamic limits of this energy technology require that the scale of production be deliberately restricted. Otherwise, society's demand for fuel could overwhelm farmers' ability to produce food - and food must remain their first priority. In exporting biomass from the farm, growers must always keep in mind the productive capacity of sustainable agricultural systems, and they must strictly monitor soil health and fertility.
The transition of farms to renewable energy will require planning. Farmers, ideally with the assistance of regional and national agencies, should plan to increase energy efficiency, to reduce fossil fuel inputs, and to grow renewable energy production according to a staged, integrated program designed for the unique needs and capabilities of each farm. As a general guideline, the plan should aim to reduce oil and natural gas inputs by at least half during the first decade Soil Fertility
In industrial agriculture, soil fertility is maintained with inputs provided from off-site. Of these inputs, the most important are nitrogen and phosphorus. Nitrogen comes from ammonia-based fertilizers made from fossil fuels - principally, natural gas. Phosphorus comes from phosphate mines in several countries. While sufficient low-quality phosphate deposits exist to supply world needs for many decades, high-quality deposits that are currently being mined are quickly depleting, which means that phosphate prices will likely rise within the next few years.
[Phosphate Primer]
Both nitrogen and phosphorus are essential to agriculture. And our current ways of supplying both are clearly unsustainable. Unless alternative ways of maintaining soil fertility are quickly found, a crisis looms.
The long-term solution will surely depend on a two-fold strategy: designing farm systems that build fertility through crop rotations, and recycling nutrients.
Crop rotation can help with maintaining nitrogen levels. Simply planting a cover crop after the fall harvest significantly reduces nitrogen leaching while cutting down on soil erosion. Meanwhile, introducing leguminous crops into the rotation cycle replaces nitrogen.
Cleverly designed polycultures can sustainably produce large amounts of food, as has been shown not only by small-scale "alternative" farmers in Britain and America, but also by large rice-and-fish farmers in China and giant-scale operations (up to 15,000 acres) in Argentina. There, farmers employ an eight-year rotation of perennial pasture and annual crops: after five years grazing cattle on pasture, farmers then grow three years of grain without applying fertilizer. The need for herbicides is also dramatically reduced: weeds that afflict pasture cannot survive the years of tillage, and weeds of row crops don't survive years of grazing.
Most industrial farmers have left behind the practice of cover cropping because commercial fertilizers have become the cheaper option. That cost equation is about to shift. It is therefore important that farmers begin planning for higher fertilizer prices now by gearing up their rotation cycles and building natural soil fertility ahead of the immediate need.
In industrial agriculture, the soil is treated as an inert substance that holds plants in place while chemical nutrients are applied externally. Without efforts to maintain natural fertility, over time organic matter disappears from the soil, along with beneficial soil micro-organisms. In the future, as chemical fertilizers become more expensive, farmers will need to devote much more attention to the practice of building healthy soil. But rebuilding nutrient-depleted soil takes, at minimum, several years of effort.
Traditional farmers increase organic matter in topsoil through the application of compost - which not only builds soil fertility, but also improves the soil's ability to hold water and thus withstand drought. There is also mounting evidence that food grown in properly composted soil is of higher nutritional quality. Currently, in typical modern cities, consumers, retailers, wholesalers and institutions discard enormous quantities of food. Some communities have already instituted municipal programs for composting of food and yard waste; such programs could be expanded and made mandatory, with compost being given free to local farmers. This would reduce the amount of garbage going to land fills, as well as farmers' needs for fertilizers and irrigation, while improving the nutritional quality of the British diet.
In addition, recent research with "terra preta" (also known as "bio char"), a charcoal-like material that can be produced from agricultural waste, suggests that its introduction to soils could reduce plants' need for nitrogen by 20 to 30 percent while sequestering carbon that would otherwise end up in the atmosphere.
The potential of composting and the use of terra preta to mitigate the climate crisis is hardly trivial: a one-percent increase of soil organic matter in the top 33.5cm of the soil is equivalent to the capture and storage of 100 tonnes of atmospheric CO2. per square kilometre of farmland.
Ultimately, there is no solution to the phosphorus supply problem other than full-system nutrient recycling. This will entail a complete redesign of sewage systems to recapture nutrients so they can be returned to the soil - as Chinese farmers learned to do centuries ago. But if sewage systems (or simpler variants) are to become primary sources of phosphorus and other soil nutrients, they cannot continue to be channels for the disposal of toxic wastes. It is essential that separate waste streams be developed for the disposal of all pharmaceuticals, household chemicals, and industrial wastes. Thus the problem of soil fertility is one that farmers cannot solve on their own: it is a crisis of the food system as a whole, and must be addressed contextually and holistically.
Diet The consumer is as important to the food system as the producer. During recent decades, consumer preferences have been shaped to fit the industrial food system through advertising and the development of mass-marketed, uniform, packaged food products that, while often nutritionally inferior, are cheap, attractive, in some cases even physically addictive. The advent and rapid proliferation of "fast food" restaurants has likewise fostered a diet that is profitable to giant industrial agribusiness, but disastrous to the health of consumers. However lamentable these trends may be from a public health standpoint, they are clearly unsustainable in view of the energy and climate crises facing modern agriculture.
Because processed and packaged foods and fresh foods imported out of season add to the energy intensity of the food system, rich and poor alike must be encouraged to eat food that is locally grown, that is in season, and that is less processed. Public education campaigns could help shift consumer preferences in this regard.
A shift toward a less meat-centered diet should also be encouraged, because a meat-based diet is substantially more energy intensive than one that is plant-based.
Government can help with a shift in diet preferences through its own food purchasing polices (see "Re-Localization," above). The process can be helped even further by a more careful official government definition of "food." It makes no sense for government efforts intended to improve the nutritional health of the people to support the consumption of products known to be unhealthful - such as soda and other junk food.
Farming Systems
During the past few decades farming has become more specialized. Today, a typical farm may produce only meat of a single kind (turkey, chicken, pork, or beef), or only dairy, or a single type of grain, vegetable, fruit, or nut.
This narrow specialization seemed to make economic sense in the era of cheap transport and cheap farm inputs. But because nature is diverse and integrated, the deliberate elimination of diversity on the farm has led to problems at every step. For example, animal feedlot operations (also known as concentrated animal feed operations, or CAFOs) produce enormous amounts of waste that end up in massive manure lagoons that pollute ground water and foul the air. Meanwhile, grain diets fed to the animals result in digestive problems requiring the large-scale administration of antibiotics that find their way into both the human food system and ground water, and that lead to antibiotic resistance among disease organisms that afflict humans.
Farm specialization also impacts the grain or vegetable grower: soils that annually produce these crops need a regular replenishment of nitrogen; but if the farmer keeps few animals, there may be no option other than to import fertilizers from off-site.
By switching to multi-enterprise diverse systems, farmers can often solve a range of problems at once. Feeding much less grain to livestock while giving them access to pasture that is in rotation with other crops maintains soil fertility while leading to better animal health and higher food quality. The farmer, the environment, and the consumer all benefit.
The post-hydrocarbon food transition may also compel a rethinking of the size of farm operations. The mechanization of farm operations and the centralization of food systems favored larger farms. However, as fuel for farm machinery becomes more costly, and as farming once again involves more labor, smaller-scale operations will once again be profitable. In addition, a smaller scale of operations will be needed as farms become more diverse, since farmers will have more system elements to monitor. Agriculture will thus become more knowledge-intensive, requiring a curious, holistic attitude on the part of farmers.
In urban areas, micro-farms and gardens - including vertical gardens and rooftop gardens that in some cases include small animals such as chickens and rabbits - could provide a substantial amount of food for growers and their families, along with occasional income from selling seasonal surpluses at garden markets.
Farm Work
With less fuel available to power agricultural machinery, the world will need many more farmers. But for farmers to succeed, some current agricultural policies that favor larger-scale production and production for export will need to change, while policies that support small-scale subsistence farms, gardens, and agricultural co-ops must be formulated and put in place - both by international institutions such as the World Bank, and also by national and regional governments.
Currently the UK has 541,0001 farmers, depending on how the term is defined. In the UK in 1900, nearly 40 percent of the population farmed; the current proportion is less than one percent. Today, the average farmer is nearing retirement age.
In nations and regions where food is grown without machinery, a larger percentage of the population must be involved in food production. For example, farmers make up more than half the populations of China, and India, Nepal, Ethiopia, and Indonesia.
While the proportion of farmers that would be needed in Britain if the country were to become self-sufficient in food grown without fossil fuels is unknown (that would depend upon technologies used and diets adopted), it would undoubtedly be much larger than the current percentage. It is reasonable to expect that several million new farmers would be required - a number that is both unimaginable and unmanageable over the short term. These new farmers would have to include a broad mix of people, reflecting the UK's increasing diversity. Already growing numbers of young adults are becoming organic or biodynamic farmers, and farmers' markets and CSAs are also springing up across the country. These tentative trends must be supported and encouraged. In addition to Government policies that support sustainable farming systems based on smaller farming units, this will require:
Education: Universities and community colleges must quickly develop programs in small-scale ecological farming methods - programs that also include training in other skills that farmers will need, such as in marketing and formulating business plans. Apprenticeships and other forms of direct knowledge transfer will also assist the transition.
Financial Support: Since few if any farms are financially successful the first year or even the second or third, loans and grants will be needed to help farmers get started. A revitalization of farming communities and farming culture: Over the past decades UK rural towns have seen their best and brightest young people flee first to distant colleges and then to cities. Farming communities must be interesting, attractive places if we expect people to inhabit them and for children to want to stay there.
Seeds Today's seed industry is centralized and reliant upon the very fuel-based transport system whose future viability is in question. Most commercial seeds are of hybrid varieties, so that farmers cannot save seed but must purchase new supplies each year.
Worldwide, a growing proportion of the commercial seeds that are available are genetically modified. GM seeds have primarily been developed by chemical companies to support the sale of their proprietary herbicides. The promise of more nutritious foods, or crops that can produce biofuels more efficiently, is years from realization. Given that the need for transition is immediate, efforts to build a post-fossil fuel food system cannot wait for new technologies that may or may not appear or succeed. In any case, the GM seed industry is based upon current systems of transport, and fuel-based inputs such as chemical fertilizers and herbicides, that are all inextricably tied to the wider fossil-fuel based provisioning systems of society. Thus GM crops would be unlikely to be of much help in the transition in any case.
What is needed instead is a coordinated effort to identify open-pollinated varieties of food crops that are adapted to local soils and microclimates, and a program to make such seeds available to farmers and gardeners in sufficient quantities. In addition, local colleges must begin offering courses on the techniques of seed saving.
Processing and Distribution Systems
The transition process will undoubtedly be fraught with challenges to food processing and distribution systems, which currently rely on large energy inputs and long-distance transport.
For example, the meat industry now depends upon centralized facilities for slaughtering livestock - which must be transported long distances to these facilities. Re-localizing food systems will entail creating incentives for the emergence of smaller, more localized slaughterhouses and butcher shops. One interim solution would be for a fleet of mobile abattoirs to go from farm to farm, processing animals humanely and inexpensively.
Many health regulations were originally designed to check abuses by the largest food producers, but such regulations may now inhibit the development of smaller-scale and more localized processing and distribution systems. For example, farmers should be able to smoke a ham and sell it to their neighbours without making a huge investment in nationally approved facilities. A small producer selling direct from the farm or at a farmers' market should not be subject to the same food safety regulations as a multinational food manufacturer: while local food may occasionally have safety problems, those problems will be less catastrophic and easier to manage than similar problems at industrial-scale facilities.
Food processors must look for ways to make their present operations more energy efficient, while government, consumers, and retailers find ways to reduce the need for food processing and also for food packaging. This gradual shift will require institutional support for families in storing, processing, cooking, and preserving food within the home.
Meanwhile, in view of inevitable problems with existing transport systems, national and regional food storage systems must be reconsidered. Reserves of grain, sufficient to provide for essential needs during an extended food crisis, should be kept and managed to avoid spoilage.
Packaging of food should be regulated to minimize the use of plastics, which will become more scarce and expensive as oil and gas deplete - and which are implicated as sources of toxins in any case. Government should institute policies that prioritize the distribution of food within the nation by rail and water, rather than by road, as trucks are comparatively energy inefficient.
Supermarkets are currently the ultimate distribution sites for food in most instances. However, this model presupposes near-universal access to automobiles and petrol. A resilient food system will require smaller and more widely distributed access points in the forms of small shops and garden or farm markets. Government regulations and tax incentives can help accomplish that shift. Wholesalers and distributors will have a changed role in a transitioning food system. They will still be needed to manage the supplies of various seasonally produced foods moving from producers to consumers. However, rather than favoring large producers and giant supermarket chains, they must alter their operations to serve smaller, more distributed farms and gardens, as well as smaller and more distributed retail shops.
Resilience Action Planning
The transition process will succeed by creating more resilience in food systems. Resilient systems are able to withstand higher magnitudes of disturbance before undergoing a dramatic shift to a new condition in which they are controlled by a different set of processes. One quality of resilience is redundancy - which is often at odds with economic efficiency. Efficiency implies both long supply chains and the reduction of inventories to a minimum. This "just-in-time" delivery of products reduces costs - but it increases the vulnerability of systems to disturbances such as fuel shortages. As more attention is paid to resilience and less to economic efficiency, redundancy and larger inventories are seen as benefits rather than liabilities. Other resilience values include diversity (as opposed to uniformity), and dispersion (rather than centralization) of control over systems.
Building resilience into our food systems as we move toward a post-fossil fuel economy will entail all of the Elements of Transition detailed above. It will also require planning at four levels: Government, Community, Business, and Individual or Family. At each level the planning process will necessarily be somewhat different. The purpose of this section is to delineate the main planning steps that will make sense at each of these levels. In some instances, steps within an action plan can or should be undertaken concurrently. In any case, what is offered here is merely a skeletal outline for a process that must be developed to fit unique needs of those it will serve. Government The following steps are applicable at any level of government - national, regional, or local. At the highest level of scale (the nation), each step will itself be the subject of planning and delegation. At the lowest level of scale (small villages), government may lack the capacity to undertake any of these steps and can do more than offer symbolic official support to volunteer citizen initiatives.
1. Assess the existing food system. Begin with a study of current systemic vulnerabilities and opportunities. How are farm inputs currently sourced? How much food is currently imported? What proportion of those food imports are staples, and what proportion are luxury foods? What are the environmental costs of current agricultural practices? How would the current food system be impacted by fuel shortages and high prices?
2. Review policies. How are current policies supporting these vulnerabilities and environmental impacts? How can they be changed or eliminated? Are there policies already in place that are likely to help with the transition? How can these latter policies be strengthened?
3. Bring together key stakeholders. Organizations of farmers, food processing and distributing companies, and retailers must all be included in the transition process. Many will wish simply to maintain the existing system; however, it must be made clear that this is not an option. Many companies involved in the food system will need to change their business model substantially. 4. Make a plan. The transition plan that is formulated must be comprehensive and detailed, and must contain robust but attainable targets with timelines and mechanisms for periodic review and revision. A scoping exercise must be undertaken to assess the impact of the plan on agricultural output and to quantify the changes in kinds of commodities produced and in their volumes and prices. Simon Fairlie's paper, "Can Britain Feed Itself?", is an initial attempt at such an exercise, and can be used as a model to be built upon and supplemented.
5. Educate and involve the public. The public must not only be informed about the government-led aspects of the transition process, but must be included in it to the extent that is practical. Citizens must be educated about food choices, gardening opportunities, and ways to access food from local producers. Their successes and challenges in adaptation will inform new iterations of the plan.
6. Shift policies and incentives. This is the key responsibility of government, as it either limits or enhances the ability of community groups, businesses, and families to engage in the transition process. Policy changes must reflect stakeholder input, but must nevertheless be designed primarily to further the Elements of Transition, rather than the short-term interests of any particular stakeholder group.
7. Monitor and adjust. An undertaking of this magnitude will inevitably have unforeseen and unintended impacts. Thus it is essential that progress be continually be reviewed with an eye to making adjustments to pace and strategy, while maintaining absolute adherence to the central task of methodically removing fossil fuels from the food system.
Community The following are action steps for adoption by voluntary community groups, as opposed to governments (see above). The Transition Network provides an excellent model for this kind of community action. Such efforts seem to work best when the scale of community is such that meetings are manageable in size and meeting participants need not travel long distances. Thus in large cities, neighborhoods could apply Resilience Action Planning while sending delegates to occasional city-wide coordinating meetings. The overlap and mutual support between community organizations and local government efforts must be a matter for discussion and negotiation. 1. Assess the local food system. This assessment process should be undertaken in cooperation with government, so as not to duplicate tasks. Volunteer citizen groups are in position to provide perspectives that otherwise might elude government assessment efforts - such as opportunities for community gardens, or problems with access to food from local producers.
2. Identify and involve stakeholders. Local growers, shop owners, public kitchens, restaurants, schools, and other institutions that produce or serve food should all be contacted and invited to join a voluntary re-localization initiative and to offer input into the process.
3. Educate and involve the public. Community groups can stage public events to raise awareness about food transition issues. "Buy local" brochures and pamphlets, paid for and distributed by a consortium of local businesses (but organized by volunteer groups), can list local producers, farm markets, restaurants, and shops.
4. Develop a unique local strategic program. This can include farmers' markets, CSAs, school lunch programs, and public kitchens, networked with local producers, including community gardens. The program, based on input from stakeholders, should feature targets and timelines developed through a "backcasting" process, beginning with a collaborative exercise aimed at envisioning the local food system as it might look in 2025 after fossil fuels have ceased to play a role.
5. Coordinate with national programs. Local volunteer efforts can play a significant role in informing national government policies, and in implementing the national transition strategy. However, this will require the maintenance of open channels of communication, which in turn will be the responsibility of both government and the local groups.
6. Support individuals and families. Individuals are likely to change food habits and priorities only if they see others doing so as well, and if they feel that their efforts are supported and valued. Community groups can help by establishing new behavioral norms through public events and articles in local newspapers. Practical help can be offered via canning parties, garden planting and harvest parties, and gleaning programs. Local food and gardening experts can be made available to answer questions and concerns. Neighborhood food storage facilities can also be created to supplement household cupboards.
7. Monitor and adjust. All of these efforts must be continually adjusted to assure that all segments of the community are included in the transition process, and that the process is working as smoothly as possible for all.
Business Relevant businesses include farms, shops, processors, wholesalers, and restaurants. However, the following steps could also be useful to organizations such as schools, colleges, and hospitals that dispense food as an ancillary part of their operations.
1. Assess vulnerabilities. Every business or organization that is part of the food system must take an honest look at the inevitable impacts of higher fuel prices, and fuel scarcity, on its operations. Examine scenarios based on a doubling or tripling of fuel costs to highlight specific vulnerabilities.
2. Make a plan. Develop a business model that works without - or with continually shrinking - fossil fuel inputs. Then "backcast" from that imagined future condition, specifying time-related targets. 3. Work with government and community groups. Given the fact that government will be developing regulations to reduce fuel use in the food system, and that community organizations will be offering support to local farmers and food shops that spearhead the transition, it makes good business sense to lead the parade rather than lagging at the rear.
4. Educate and involve suppliers and customers. No business is an island. The transition will flourish through strengthened relationships on all sides.
5. Monitor and adjust. For businesses, one obvious and essential criterion of success is profitability. The bottom line will help indicate which adaptive strategies are working, and which ones need work. However, negative financial feedback is no reason to abandon the essential goal of transition.
Individual and Family
1. Assess food vulnerabilities and opportunities. Whether at a family meeting or by oneself over a cup of tea, take a long honest look at your typical monthly food purchases and give careful thought to the implications. How much of your food comes from within 100 miles? How much is packaged and processed? How many meals are meat-centered? Where do you shop? How would you be impacted if food and fuel prices doubled or tripled?
2. Make a plan. Create an ideal food scenario for yourself, including diet, shopping habits, and gardening goals. Then "backcast" a series of time-related goals. Write these prominently on a calendar and attach it to the front of your refrigerator.
3. Garden. Even if you don't have access to a plot of land, you can still grow sprouts in a jar or a few food plants in a window box. Look for opportunities to contribute work to a community garden. Develop your skills by seeking out gardening mentors.
4. Develop relations with local producers. Even if you have a large garden you probably can't grow all the food you eat. Rather than shopping at a supermarket, begin to frequent your local farmers' market, or join a CSA.
5. Become involved in community efforts. Get to know your neighbors and compare gardening experiences with them. Together, form a "tool library" from which members can check out garden tools and gardening books. Organize or participate in planting, harvesting, food-swapping, gleaning, and canning parties.

6. Monitor and adjust. At the end of each month, revisit your plan and revise it if necessary.