Showing posts with label gasoline. Show all posts
Showing posts with label gasoline. Show all posts

Friday, May 1, 2009

Flare Gas Conversion Achieved

This is an exceptional development in improving oil field operations. All oil fields produce some gas, otherwise the oil is dead and usually refuses to flow. It is the dissolved gas that expands and pushes oil out of the pores and cracks in a geologic formation. That some of that gas can be a sulphur gas is never good news.

It appears that this process can take that messy blend of odds and ends and by consuming a little over fifty percent as fuel, it can produce a gasoline and byproducts out of impurities such as sulphur. The exhaust gas is clean CO2 that can be usually injected straight away back into the formation itself or into another formation.

This sounds like it is capable of handling the whole oil industry byproduct stream in one simple process and bypassing multiple stages which are barely justified in any field,

Many engineers have put their minds to this problem but no blanket solution was ever suggested except simply burning the gases. Perhaps that will now be ended.

Flame Off!: Turning Natural Gas Pollution into Gasoline

Rather than pollute the atmosphere by venting or flaring the natural gas that comes out of oil wells, a new technology would turn it into gasoline or other products

http://www.sciam.com/article.cfm?id=turning-natural-gas-pollution-into-gasoline&sc=CAT_TECH_20090429id

As if
burning oil and all of its derivatives wasn't bad enough for the environment, there's also the natural gas that bubbles up as the oil is pumped out. This byproduct cannot be easily harvested in many cases—some oil fields are far from pipelines that can transport it and other options are very expensive.
As a result, oil companies either release it into the atmosphere—a process known as venting—or burn it in a flare.Using either method produces gases that the atmosphere doesn't need more of: venting discharges methane, a potent greenhouse gas, whereas flaring generates carbon dioxide.
The World Bank estimates that the 5.3 trillion cubic feet (150 billion cubic meters) of natural gas that bubbles up at oil wells worldwide adds some 400 million metric tons of CO2 to the atmosphere each year—as well as more methane.
Existing technologies allow oil producers who cannot pump the natural gas into a pipeline to simply reinject it back underground, use it to generate electricity or, by installing a so-called Fischer–Tropsch conversion system, change the former nuisance gas into liquid fuel, among other options. But those approaches cost much more than the approximately 50 cents per thousand cubic feet (28 cubic meters) for flaring, and add up to millions of dollars for a large oil field.
A Fischer–Tropsch system, for example, starts at a billion dollars.Now a new process offers hope of turning that stranded natural gas into something useful and transportable instead: gasoline. Dallas-based company Synfuels International peddles a process that converts oil well emissions into the building blocks of plastics or fuel. Since 2005 the company has been running a demonstration plant in Texas and is in negotiations to put up its first commercial facility near Houston.
"Our process can go into oil fields and operate without the need for electricity or water to convert what otherwise would be flared gas into gasoline or it can be mixed with crude [oil] to increase quality and quantity," says Synfuels president Tom Rolfe.
"Any transportation fuel that is salable is really our end goal."Here is how it works: The natural gas is cracked with heat—produced by burning some of the natural gas to generate temperatures from 2,700 to 3,300 degrees Fahrenheit (1,480 to 1,815 degrees Celsius)—into acetylene, a simple hydrocarbon.
The acetylene is absorbed by a liquid solvent and then reacted to produce ethylene, a longer hydrocarbon chain that is the starting constituent of many plastics, detergents and other products. When liquid fuel is the goal, then the ethylene is chemically bound together to form even longer hydrocarbon chains that we know as gasoline or kerosene (jet fuel).
"We're still developing a process to produce diesel," Rolfe says.The process converts roughly 50 percent of the natural gas to acetylene—the other half is burned for the heat that drives the process, which still releases CO2 into the atmosphere—and nearly all of that acetylene to ethylene, and then ethylene to fuel.
"Overall conversion rates from the [natural] gas to fuel-grade liquids is as high as 46 percent in optimal, real-world conditions," Rolfe says—as good or better than established facilities employing Fischer-Tropsch, such as Johannesburg-based Sasol, Ltd.'s plants in South Africa.
The resulting fuel has no sulfur. (Sulfur and mercury are removed as solids and can be buried or converted to useful materials.) And, it can be directly used in cars or other vehicles in some countries. (In the U.S., air pollution regulations would make it necessary to ship it to a refinery for final processing or blend it with a less aromatic gasoline.)
"In a country like Saudi Arabia, you could fill your car up with the gas we make and drive away," Rolfe notes.
In the U.S. generating electricity or putting the natural gas into a pipeline often makes sense because of existing infrastructure.
But in Nigeria, for example, oil companies flare some 850 billion cubic feet (24 billion cubic meters) per year at oil platforms that have no need to generate electricity because of the platform's remote location and no pipelines to carry off the natural gas.
At such locations, Synfuels's process or Fischer–Tropsch could make financial sense. But the $150 million to $200 million that Rolfe says a Synfuels process plant will cost is just a fraction of the Fischer–Tropsch price.
"If there's no pipeline, you're just burning money [by flaring] and hurting the Earth," Rolfe notes.In addition, the Synfuels process can handle small volumes of natural gas—ranging from one to 300 million cubic feet (8.5 million cubic meters) per day.
That is important because most oil wells do not spew a lot of natural gas, which makes the Synfuels approach useful even at smaller fields.
Depending on the quality of the natural gas itself, the process can then make gasoline at a cost of roughly $31 to $63 per barrel (73 cents to $1.50 per gallon), depending on whether the natural gas is pure methane (more costly to transform) or has other hydrocarbons mixed in.
But the technology is not just useful for so-called stranded natural gas in the developing world; in Alaska, much natural gas is simply reinjected back into the oil wells from which it came either to boost oil production or simply avoid atmospheric venting or flaring.
"With Synfuels plants, if you captured and processed all the natural gas that is being reinjected and wasted today, you could make 550,000 barrels (87.5 million liters) of gasoline a day," Rolfe says.
That translates into money: Converting just 10 percent of the flared natural gas worldwide to gasoline sold at $70 per barrel would net $3.1 billion in revenue.
"From an environmental point of view, any use of natural gas is preferable to flaring," notes chemical engineer James Miller of Sandia National Laboratories. But "the economics would be highly dependent on what you do with the syngas components of this [process]."
"All of the syngas goes into heat or energy production," Synfuels chemist Ed Peterson says, and the company cuts down on cost by using such by-products to make energy and employing components built with cheaper steel alloyed with carbon as well as easy to maintain low pressures.
Within the next three years, the company hopes to build four such plants in the U.S., Trinidad and Tobago, Nigeria, and Iraq and is negotiating in Argentina, Australia, Kazakhstan and Kuwait.
"There's a huge impetus to stop gas flaring around the world," Peterson says. "This is just one of those ways."

Monday, September 15, 2008

Solazyme brews Jet Fuel

This item can be described as more good news coming out of the ongoing efforts to harness algae. We are seeing second, third and forth generational ideas paying of quickly.

Replacing jet fuel with an equivalent biological was unhoped for because I have made the natural assumption that like oil, a substantial processing phase would need to be engineered once a biological oil source was built out. Instead we have clearly got another brew master’s operation that can use plant material as feed stock without a lot of fuss.

I hope this means that it can be built out in farm sized units to avoid excessive haulage costs. Just as obviously, if they can produce jet fuel or even an unrefined precursor at this scale, it should also be possible to produce from the same system a gasoline and diesel equivalent.

This sounds a lot easier than the many other protocols that we have discussed so far. Pyrolysis was always a nonstarter for the liquid fuel cycle and so was playing with natural algae. Ethanol was possible if algae or cattails produced the feedstock. The idea that we can side step all these issues and natural complexities and brew up jet fuel from plant waste is almost too good to be true. It is certainly a good objective to achieve and let us hope that this company is not been premature.

The company has focused its research on marine algae and has announced and tested biodiesel produced through their work. My sense is that they are pushing the research envelop to perfect the necessary production protocols. Actual commercialization should be the next step.

It would be a remarkable development if it becomes possible to shift transportation fuel production completely into agriculture at the same time consuming agricultural waste.

The use of agricultural waste as a feed stock for producing biochar is important for manufacturing high quality soils, but is not necessary once such soils are produced. Conversion to fuel nicely consumes this surplus.


Microbes Grow Jet Fuel in the Dark
September 10, 2008

The South San Francisco company
Solarzyme announced this week that it has produced the world's first microbial-derived jet fuel to pass the eleven most challenging specifications needed to meet the Aviation Turbine Fuel standards.

Solarzyme's algal-derived aviation fuel was analyzed by the Southwest Research Institute, one of the nations leading fuel analytical laboratories. The tested areas included the key measurements for density, thermal oxidative stability, flashpoint, freezing point, distillation and viscosity, the biggest hurdles needed to develop a commercial and military jet fuel.

Given Solarzyme's excellent cold-temperature performance and the clean characteristics of the oil, former military fuels specialists note that new algae-based fuels could help the DOD comply with recently enacted mandates to reduce our dependence on foreign oil and utilize environmentally friendly fuels.

In the U.S. alone, 1.6 billion gallons of jet fuel are used every month resulting in significant greenhouse gas emissions. The need for environmentally friendly and sustainable alternatives is growing rapidly. The EU is requiring that every nation landing there
must adhere to their emission standards by 2012.

But it's not merely foreign legislative pressure that's driving change. As peak oil nears, jet fuel already accounts for 36 percent of airline industry costs -- up from 13 percent just six years ago -- and could account for 40 percent of industry costs next year.

While algae-based fuel is currently almost as expensive as oil to produce, it has a significantly different estimated cost going forward, since it is made up of cells that double exponentially over time (2,4,8,16,32, 64...). Oil supplies will be increasingly scarce and expensive to extract over that time period.

Solarzyme is currently producing thousands of gallons of oil a month at scale and is the only advanced biofuels company that has produced fuels that have passed specification testing and are compatible with the existing transportation fuel infrastructure. Solarzyme uses directed evolution to engineer an organism to perform a desired function, the same technique farmers have employed since the dawn of civilization to breed new strains of higher production grain and so on, but this is done at the gene sequence level.

Solarzyme's process needs no sunlight, unlike other algae farming startups such as the New Zealand startup that
will be flying a Boeing test to San Francisco this month. This lack of a need for sunlight makes for an efficient and fast process, and the feedstock is very sustainable: agricultural waste, cellulosic material such as switchgrass and industrial byproducts. Algae doesn't require vast amounts of land. You can even grow algae on the roof of a sewage plant.

Unlike the materials utilized in any other mass production process that we enterprising humans have ever used to make things with, by its very nature, algae just keeps on growing.

Wednesday, July 25, 2007

Oil Squeeze

I throw these little comments on the condition of the oil market in from time to time, because it will be impacting us all very seriously. We all have learned that we can handle a $100 fill up. Can we handle a $500 fill up? Hell no! And that is what is coming because the average citizen is about to be forced out of the gasoline market.

It is really very simple. We now have no reasonable way to even maintain current production levels and no amount of investment is going to change that fast enough now. It is already too late. The fact is that past levels of huge sustained investment has failed in keeping pace with demand and that demand has also accelerated.

The only option left is to let prices rise to a level that effectively rations transportation fuel to the highest and best use. %500 a tank should do it. We know that the economy will adjust very quickly, but we also know that we will have to restructure our lives toward a far lower usage of automotive fuel.

The only question now is if it will be slow and easy which is preferred or abrupt which is often ugly.