Nice scheme. Yet may still be too expensive. Now you need a high volume app.
Or again we are a solution in search of a problem. Not fun.
Still a step;' forward and may become useful.
Squid skin inspires versatile new "tunable" insulating material
By David Szondy
March 29, 2022
Using squid skin as a model, the UC Irvine team have developed a composite material that regulates heat
https://newatlas.com/good-thinking/tunable-insulating-material-thermoregulation-squid-skin-uc-irvine/?
A team of engineers led by Alon Gorodetsky at the University of California, Irvine, has come up with a new infrared-reflecting, metalized polymer film inspired by the color-changing skin of the squid. The tunable insulating properties of the composite could make it useful in everything from coffee cups to shipping containers, plus its recyclable and can be manufactured economically at scale.
Often the guest of honor in a dish of calamari, the squid is such an odd sea dweller that it's easy to mistake it for a creature from outer space. Aside from its dexterous tentacles, jet propulsion, high intelligence (for a mollusc), and disturbingly human-like eyes, the squid shares with other cephalopods the ability to change color in a flash.
The squid changes its patterns of color in order to hide from predators or prey, or as a way of communicating. It does so with such speed that it seems almost as if it has an in-built digital display. In fact, it manages this feat by means of what are called chromatophores. These are specialized sacs in the animal's skin that contain pigment granules. By distorting the sacs using its muscles, the squid can alter their translucency, reflectivity, or opacity.
Using this as a model, the UC Irvine team came up with a composite material that, instead of shifting pigment about, regulates heat. It's made of a polymer and metals and can reconfigure its structure to make it more or less reflective of heat, depending on how much stress is applied to it.
"The metal islands in our composite material are next to one another when the material is relaxed and become separated when the material is stretched, allowing for control of the reflection and transmission of infrared light or heat dissipation," said Gorodetsky. "The mechanism is analogous to chromatophore expansion and contraction in a squid’s skin, which alters the reflection and transmission of visible light."
However, it isn't just the material that's clever, but the team's effort to make it practical from a commercial and an environmental point of view. By applying the copper on a substrate of aluminum and spraying it with multiple layers of polymers, the researchers say the new material can be produced in any roll-batch size with economies of scale that bring costs down to about US$0.1 m⁻².
The team says that the film could be used in everything from coffee cups to carry bags to shipping containers, and it has the advantage of insulating qualities that are tunable, so you can get your cocoa down to a drinkable temperature quickly. In addition, the materials can be recycled using conventional commercial methods by removing the metals and repurposing the remaining polymers.
No comments:
Post a Comment