Ultimately we
want to tap the ambient energy content and operate at a level to utilize it
without wasting resources on storage.
We may be there now if these reports are up to it. Again it is not free energy as in the form of
been actively created but tapping energy potential in the same way we tap a
hydrostatic head to turn a turbine.
More to the
point, our drive to miniaturization has simply made it all accessible and we
are finally getting there.
Imagine clothing
that selectively gathers energy to keep us warm. This too will be possible and we will wear it
like a skin.
Is Free Energy
Slowly Being Unveiled?
Ere many generations pass, our machinery will be
driven by a power obtainable at any point of the universe. Throughout space
there is energy. -- Nikola Tesla, 1892
Monday, August 19, 2013
When Tesla invented the
first wireless communication device, he also discovered a form of free energy
radiating throughout the whole universe. He planned on displaying
wireless electric power with his Wardenclyffe Tower until it was sabotaged
by financier J.P. Morgan.
Tesla conceded that his World Power System project was "retarded by laws of nature. The world was not prepared for it. It was too far ahead of time. But the same laws will prevail in the end and make it a triumphal success."
Perhaps the the world is now prepared for this technology as small applications using Tesla's discoveries are finally being revealed to the public.
In a 1900 magazine article, The Problem of Increasing Human Energy, Tesla discusses a machine that can gather heat from the ambient air and other forms of harvesting energy from the natural world.
Just a short 112 years later, in March of last year,
scientists in Hong Kong built a graphene battery that turns ambient heat into electric
current. This technology
was picked up by UCLA researchers who
claimed this same discovery as their own, seen in the video below:
More interesting Tesla technology came out earlier
this year when a German university student invented a device that harvests electromagnetic waves to charge a battery.
Two more significant achievements have been
announced in this month. One was seemingly being rolled out to acclimate
the public to this coming technology, while the other quieter story is one
where similar technology is already being used to power space propulsion.
Researchers from Washington University unveiled a wireless communication device called Ambient Backscatter that requires no battery.
They describe their device as:
Ambient Backscatter transforms existing wireless signals
into both a source of power and a communication medium. It enables two
battery-free devices to communicate by backscattering existing wireless
signals. Backscatter communication
is orders of magnitude more power-efficient than traditional radio communication.
Further, since it leverages the ambient RF signals that are already around us,
it does not require a dedicated power infrastructure.
They included an informative video explaining the
technology and its possible uses:
Now try to imagine this type of self-harnessing
power technology used on a larger scale. It's currently being tested on the
International Space Station.
On August 12th, the University of Maryland announced their success in powering the propulsion of satellites and the space station with a renewable electromagnetic power source. The project, sponsored by DARPA and NASA, is called RINGS (Resonant Inductive Near-field Generation System).
Besides testing electromagnetic propulsion, they also intend to use RINGS to demonstrate wireless power transfer (WPT). "WPT may offer a means to wirelessly transfer power between spacecraft and in turn power a fleet of smaller vessels or satellites."
New electromagnetic propulsion technology being
tested by the University of Maryland's Space Power and Propulsion Laboratory
(SPPL) on the International Space Station could revolutionize the capabilities
of satellites and future spacecraft by reducing reliance on propellants and
extending the lifecycle of satellites through the use of a renewable power
source.
Because a finite propellant payload is often the
limiting factor on the number of times a satellite can be moved or repositioned
in space, a new propulsion method that usesa renewable, onboard electromagnetic
power source and does not rely on propellants could exponentially extend a
satellite's useful life span and provide greater scientific return on
investment.
Associate Professor of Aerospace Engineering Ray
Sedwick and his research team have been developing technology that could enable
electromagnetic formation flight (EMFF), which uses locally generated
electromagnetic forces to position satellites or spacecraft without relying on
propellants. Their research project is titled Resonant Inductive Near-field
Generation System, or RINGS.
RINGS was sent to the International Space Station on
August 3 as part of a payload launched on Japan’s HTV-4 Cargo Ship from the
Tanegashima Space Center. The project is scheduled for four test sessions on
the research station. Astronauts will unpack the equipment, integrate it into
the test environment and run diagnostics. From there, RINGS will undergo three
science research sessions where data will be collected and transmitted back to
the ground for analysis.
RINGS is composed of two units, each of which
contains a specially fabricated coil of aluminum wire that supports an
oscillating current of up to 18 amps and is housed within a protective
polycarbonate shell. Microcontrollers ensure that the currents oscillate either
in-phase or out-of-phase to produce attracting, repelling and even shearing
forces. While aluminum wire was chosen for its low density in this research
prototype, eventual systems would employ superconducting wires to significantly
increase range and performance.
In the spring of 2013, RINGS was tested for the
first time in a microgravity environment on NASA's reduced gravity aircraft.
UMD graduate students Allison Porter and Dustin Alinger were on hand to oversee
the testing. RINGS achieved the first and only successful demonstration of EMFF
in full six degrees of freedom to date.
"While reduced gravity flights can only provide
short, 15-20 second tests at a time, the cumulative test time over the four-day
campaign provided extremely valuable data that will allow us to really get the
most from the test sessions that we’ll have on the International Space
Station," said Sedwick.
In addition to EMFF, the RINGS project is also being
used to test a second technology demonstrating wireless power transfer (WPT).
WPT may offer a means to wirelessly transfer power between spacecraft and in
turn power a fleet of smaller vessels or satellites. Having the power to
support multiple satellites, and using EMFF as a propellant-less means to
reposition those same satellites, provides the flexibility to perform formation
control maneuvers such as on-orbit assembly or creating synthetic aperture
arrays. A synthetic aperture array uses a network of smaller antennas to
function collectively as one large antenna. Larger antennas are capable of
producing higher resolution images and better quality data.
And these are just some of the recent examples of
the unveiling of this technology which seemed to have been largely under wraps
until now.
Is the age of free energy upon us? Will some of this technology escape and go open source?
No comments:
Post a Comment