That is the good news. In the process they trigger all sorts of good things that advance our general health.
What is clear though is that all refined food naturally eliminates a wide range of active compounds we actually respond well to. All this strongly supports eating a lot of veggies. The wider the variety the better and to love slightly toxic stuff as well.
A useful discussion regarding excess training and the proper application of lower impact training that is worthwhile. This has the potential of been better than steroids.
.
Fruits and Vegetables Are Trying to Kill You
Antioxidant vitamins don’t stress us like plants do—and don’t have their beneficial effect.
Moises Velasquez-Manoff
https://getpocket.com/explore/item/fruits-and-vegetables-are-trying-to-kill-you
You probably try to exercise
regularly and eat right. Perhaps you steer toward “superfoods,” fruits,
nuts, and vegetables advertised as “antioxidant,” which combat the
nasty effects of oxidation in our bodies. Maybe you take vitamins to
protect against “free radicals,” destructive molecules that arise
normally as our cells burn fuel for energy, but which may damage DNA and
contribute to cancer, dementia, and the gradual meltdown we call aging.
Warding off the diseases of aging is certainly a
worthwhile pursuit. But evidence has mounted to suggest that antioxidant
vitamin supplements, long assumed to improve health, are ineffectual.
Fruits and vegetables are indeed healthful but not necessarily because
they shield you from oxidative stress.
In fact, they may improve health for quite the opposite reason: They stress you.
In fact, they may improve health for quite the opposite reason: They stress you.
That stress comes courtesy of trace amounts of naturally
occurring pesticides and anti-grazing compounds. You already know these
substances as the hot flavors in spices, the mouth-puckering tannins in
wines, or the stink of Brussels sprouts. They are the antibacterials,
antifungals, and grazing deterrents of the plant world. In the right
amount, these slightly noxious substances, which help plants survive,
may leave you stronger.
Eating food from plants that have struggled to survive toughens us up as well.
Parallel studies, meanwhile, have undercut decades-old
assumptions about the dangers of free radicals. Rather than killing us,
these volatile molecules, in the right amount, may improve our health.
Our quest to neutralize them with antioxidant supplements may be doing
more harm than good.
The idea that pro-oxidant molecules are always
destructive is “oversimplified to the point of probably being wrong,”
says Toren Finkel, chief of the center for molecular medicine at the
National Heart, Lung, and Blood Institute in Bethesda, Maryland.
“Oxidants may be a primordial messenger of stress in our cells, and a
little bit of stress, it turns out, may be good for us.”
Although far from settled, a wave of compelling science
offers a remarkably holistic picture of health as a byproduct of
interactions among people, plants, and the environment. Plants’ own
struggle for survival— against pathogens and grazers, heat and
drought—is conveyed to us, benefitting our health. This new
understanding begins, in part, on a treadmill.
***
In the mid-20th century, as
modern medicine seemed poised to vanquish the infectious diseases of
yore, some scientists turned to the degenerative diseases associated
with aging. Attention fell on a class of molecules called “reactive
oxygen species,” or ROS. These volatile substances could damage DNA.
Degenerative diseases, such as cancer and cardiovascular disease, often
showed evidence of “oxidative stress,” suggesting that ROS spurred
disease.
Oddly, our mitochondria, the energy factories of our
cells, emitted ROS naturally. So degenerative disease seemed to stem in
part from our own metabolic function: Your mitochondria “burned” fuel,
emitted this toxic exhaust, and inadvertently set the limits on your
existence. That was the working hypothesis, at any rate.
Experiments on rats and worms showed that reactive
oxygen species, such as hydrogen peroxide, tear atoms from other
molecules, destroying them in the process. That can be problematic when
those molecules are DNA, our cellular instruction manual. We produce
native antioxidants, such as the molecule glutathione, to counteract
this pro-oxidant threat. They react with ROS, neutralizing the
pro-oxidants before they can damage important cellular machinery.
When scientists blocked rodents’ ability to manufacture
these protective molecules, lifespan declined. Observational studies,
meanwhile, suggested that people who regularly ate vitamin-laden fruits
and vegetables were healthier. So were people with higher levels of
vitamins E and C in their blood.
Vitamins were strongly antioxidant in test tubes. So the ROS theory of aging and disease rose to prominence. You could slow aging, it followed, by neutralizing free radicals with antioxidant pills. A supplement industry now worth $23 billion yearly in the U.S. took root.
But if those ROS were so harmful, some scientists
asked—and the basic design of our (eukaryote) cells was over 1 billion
years old—why hadn’t evolution solved the ROS problem? At the same time,
scientists began finding that exercise and calorie restriction
increased lifespan in animals. Both elevated ROS. According to the ROS
model of aging, animals that exercised and fasted should have died
younger. But they lived longer.
For Michael Ristow, a researcher of energy and
metabolism at the Swiss Federal Institute of Technology in Zurich, the
inconsistencies became impossible to overlook. In worms, he found that
neutralizing those allegedly toxic ROS reduced lifespan, so he designed a
similar experiment in humans.
He had 39 male volunteers exercise regularly over
several weeks; half took vitamin supplements before working out. The
results, published in 2009, continue to reverberate throughout the field
of exercise physiology, and beyond. Volunteers who took large doses of
vitamins C and E before training failed to benefit from the workout.
Their muscles didn’t become stronger; insulin sensitivity, a measure of
metabolic health, didn’t improve; and increases in native antioxidants,
such as glutathione, didn’t occur.
Exercise accelerates the burning of fuel by your cells.
If you peer into muscles after a jog, you’ll see a relative excess of
those supposedly dangerous ROS—exhaust spewed from our cellular
furnaces, the mitochondria. If you examine the same muscle some time
after a run, however, you’ll find those ROS gone. In their place you’ll
see an abundance of native antioxidants. That’s because, post-exercise,
the muscle cells respond to the oxidative stress by boosting production
of native antioxidants. Those antioxidants, amped up to protect against
the oxidant threat of yesterday’s exercise, now also protect against
other ambient oxidant dangers.
Contrary to the ROS dogma, Ristow realized, the signal
of stress conveyed by the ROS during exercise was essential to this
call-and-response between mitochondria and the cells that housed them.
To improve health, he figured, perhaps we shouldn’t neutralize ROS so
much as increase them in a way that mimicked what happened in exercise.
That would boost native antioxidants, improve insulin sensitivity, and
increase overall resilience.
Ristow called this idea “mitohormesis.” The term
“hormesis” came from toxicology (“mito” was for mitochondrion). It
describes the observation that some exposures generally considered toxic
can, in minute amounts, paradoxically improve health. For instance,
minuscule quantities of X-ray radiation, a known carcinogen, increases
the lifespan of various insects.
Hormesis may be most easily grasped when considering
exercise. Lift too much weight or run too long, and you’ll likely tear
muscle and damage tendons. But lift the right amount and run a few times
a week, and your bones and muscles strengthen. The intermittent torque
and strain increases bone mineralization and density. Stronger bones may
better tolerate future shocks that might otherwise cause fractures.
[ Very Good - this reflects my Qi gong inspired program and als opens a road forward - arclein]
[ Very Good - this reflects my Qi gong inspired program and als opens a road forward - arclein]
In his experiment, Ristow saw that vitamin supplements
interrupted this sequence of stress followed by fortification, probably
because they neutralized the ROS signal before it could be “heard”
elsewhere in the cell. By interfering in the adaptive response, vitamins
prevented the strengthening that would have otherwise followed the
stress of physical exertion. Antioxidant supplementation paradoxically
left you weaker.
Vitamins are necessary for health. And supplements can
help those who are deficient in vitamins. Insufficient vitamin C, for
instance, causes scurvy, which results from defective collagen, a
protein in connective tissue. Among other functions, vitamin C aids
collagen synthesis.
But the primary role of vitamins in our body, according
to Ristow and others, may not be antioxidant. And the antioxidant
content of fruits and veggies does not, he thinks, explain their
benefits to our health. So what does?
***
Mark Mattson,
Chief of the Laboratory of Neurosciences at the National Institute on
Aging, has studied how plant chemicals, or phytochemicals, affect our
cells (in test tubes) for years. The assumption in the field has long
been that, like vitamins, phytochemicals are directly antioxidant. But
Mattson and others think they work indirectly. Much like exercise, he’s
found, phytochemicals stress our bodies in a way that leaves us
stronger.
Plants, Mattson explains, live a stationary life. They
cannot respond to pathogens, parasites, and grazers as we might—by
moving. To manage the many threats posed by mobile life, as well as
heat, drought, and other environmental stresses, they’ve evolved a
remarkable number of defensive chemicals.
Health doesn’t result solely from the instructions your genome contains, but your relationship with the world.
We’re familiar with many components of their arsenal.
The nicotine that we so prize in tobacco slows grazing insects. Beans
contain lectins, which defend against insects. Garlic’s umami-like
flavor comes from allicin, a powerful antifungal. These “antifeedants”
have evolved in part to dissuade would-be grazers, like us.
Mattson and his colleagues say these plant
“biopesticides” work on us like hormetic stressors. Our bodies recognize
them as slightly toxic, and we respond with an ancient detoxification
process aimed at breaking them down and flushing them out.
Consider fresh broccoli sprouts. Like other cruciferous
vegetables, they contain an antifeedant called sulforaphane. Because
sulforaphane is a mild oxidant, we should, according to old ideas about
the dangers of oxidants, avoid its consumption. Yet studies have shown
that eating vegetables with sulforaphane reduces oxidative stress.
When sulforaphane enters your blood stream, it triggers
release in your cells of a protein called Nrf2. This protein, called by
some the “master regulator” of aging, then activates over 200 genes.
They include genes that produce antioxidants, enzymes to metabolize
toxins, proteins to flush out heavy metals, and factors that enhance
tumor suppression, among other important health-promoting functions.
In theory, after encountering this humble antifeedant in
your dinner, your body ends up better prepared for encounters with
toxins, pro-oxidants from both outside and within your body, immune
insults, and other challenges that might otherwise cause harm. By
“massaging” your genome just so, sulforaphane may increase your
resistance to disease.
In a study on Type 2 diabetics, broccoli-sprout powder
lowered triglyceride levels. High triglycerides, a lipid, are associated
with an increased risk of heart disease and stroke. Lowering abnormally
elevated triglycerides may lessen the risk of these disorders. In
another intervention, consuming broccoli sprout powder reduced oxidative
stress in volunteers’ upper airways, likely by increasing production of
native antioxidants. In theory, that might ameliorate asthmatics’
symptoms.
Elevated free radicals and oxidative stress are
routinely observed in diseases like cancer and dementia. And in these
instances, they probably contribute to degeneration. But they may not be
the root cause of disease. According to Mattson, the primary
dysfunction may have occurred earlier with, say, a creeping inability to
produce native antioxidants when needed, and a lack of cellular
conditioning generally.
Mattson calls this the “couch potato” problem. Absent
regular hormetic stresses, including exercise and stimulation by plant
antifeedants, “cells become complacent,” he says. “Their intrinsic
defenses are down-regulated.” Metabolism works less efficiently. Insulin
resistance sets in. We become less able to manage pro-oxidant threats.
Nothing works as well as it could. And this mounting dysfunction
increases the risk for a degenerative disease.
Implicit in the research is a new indictment of the
Western diet. Not only do highly refined foods present tremendous
caloric excess, they lack these salutary signals from the plant
world—“signals that challenge,” Mattson says. Those signals might
otherwise condition our cells in a way that prevents disease.
Another variant of the hormetic idea holds that our
ability to receive signals from plants isn’t reactive and defensive but,
in fact, proactive. We’re not protecting ourselves from biopesticides
so much as sensing plants’ stress levels in our food.
Harvard scientist David Sinclair and his colleague
Konrad Howitz call this xenohormesis: benefitting from the stress of
others. Many phytonutrients trigger the same few cellular responses
linked to longevity in eukaryotic organisms, from yeasts to humans.
Years of research on Nrf2 in rodents suggest that activating this
protein increases expression of hundreds of health-promoting genes,
including those involved in detoxification, antioxidant production,
control of inflammation, and tumor suppression.
In the dance between animals and plants, there’s true mutualism. “We’re in this together, the plants and us.”
Sinclair studies another class of native proteins,
called sirtuins, associated with health. They’re triggered by exercise
and also, Sinclair contends, a molecule called resveratrol, found in
grape skins and other plants. “It’s too coincidental that time and time
again these molecules come out of nature that have the surprising
multifactorial benefit of tweaking the body just the right way,”
Sinclair says.
They’re not all antifeedants, he argues. Plants churn
these substances out when stressed, prompting further adaptations to the
particular threat, be it drought, infestation by grazing insects, or
excessive ultraviolet radiation from the sun.
For grazers, these stress compounds in plants may convey
important information about environmental conditions. So grazers’
ability to “perceive” these signals, Sinclair argues, likely proved
advantageous over evolutionary time. It allowed them to prepare for
adversity. A grape vine stressed by fungi churns out resveratrol to
fight off the infection. You drink wine made from those grapes, “sense”
the harsh environmental conditions in the elevated tannins and other
stress compounds, gird your own defenses, and, in theory, become more
resistant to degenerative disease.
One implication is that modern agriculture, which often
prevents plant stress with pesticides and ample watering, produces
fruits and vegetables with weak xenohormetic signals. “I buy stressed
plants,” Sinclair says. “Organic is a good start. I choose plants with
lots of color because they are producing these molecules.” Some argue
that xenohormesis may explain, at least in part, why the Mediterranean
diet is apparently so healthful. It contains plants such as olives,
olive oil, and various nuts that come from hot, dry, stressful
environments. Eating food from plants that have struggled to survive
toughens us up as well.
Philip Hooper, an endocrinologist at the University of
Colorado Anschutz Medical Campus, points out that plant-animal
relationships are often symbiotic, and communication goes both ways. One
example of direct plant-to-animal, biochemical manipulation comes from
the coffee bush. Flowering plants compete with one another for the
attention of pollinators, such as bees. Coffee bushes seem to gain
advantage in this “marketplace” by using caffeine. The drug excites
pollinators’ neurons, etching the memory of the plant’s location more
deeply in their brains. Some think that biochemical tweaking increases
the probability that the pollinator, which faces a panoply of flower
choices, will return to that particular coffee bush.
In the dance between animals and plants, says Hooper, “I
think there’s true mutualism. We’re in this together, the plants and
us.”
***
While xenohormesis is
a compelling idea, it remains unproven. Barry Halliwell, a biochemist
at the National University of Singapore, and an expert on antioxidants,
has seen the dietary fads, from vitamins to fiber, come and go. He says
the hormetic and xenohormetic ideas are plausible, but not certain.
Various studies suggest that people who consume a lot of fruits and
vegetables have healthier lifestyles generally. Those people probably go
easy on the junk food, which alone may improve health.
Even within the hormetic idea, Halliwell sees the
attempts to bore down on the individual chemicals as problematic.
“That’s worked very well in pharmacology, but it hasn’t worked at all
well in nutrition,” he says. He doesn’t think any single phytonutrient
will explain the apparent health-promoting benefits of fruits and
veggies. “Variety seems to be good,” he says. That critique speaks to a
larger problem: It’s often unclear how lab research on simple organisms
or cell cultures will translate, if at all, into recommendations or
therapies for genetically complex, free-living humans.3
What works in genetically uniform organisms, or cells,
living in highly controlled environments, does not necessarily work in
people. Human studies on resveratrol in particular have yielded
contradictory results. Proper dosage may be one problem, and interaction
between the isolates used and particular gene variants in test subjects
another. Interventions usually test one molecule, but fresh fruits and
vegetables present numerous compounds at once. We may benefit most from
these simultaneous exposures.
The science on the intestinal microbiota promises to
further complicate the picture; our native microbes ferment
phytonutrients, perhaps supplying some of the benefit of their
consumption. All of which highlights the truism that Nature is hard to
get in a pill.
These caveats aside, research into xenohormesis reminds
us that we are not at the complete mercy of our genetic inheritance.
Genes matter, but health depends in large part on having the right genes
expressed at the right time—and in the right amount. If our genome is a
piano, and our genes are the keys, health is the song we play on the
piano. The science on hormesis, the stresses that may keep us strong,
provides hints about what kind of song we should play. Keep the body
conditioned with regular exercise. Keep your cells’ stress-response
pathways intermittently engaged with minimally processed, plant-based
food.
These recommendations end up sounding rather
grandmotherly—if your grandmother was a spartan, no-nonsense peasant who
lived off the land. But the underlying thrust contradicts assumptions
about the need to protect oneself from hardship. Certain kinds of
difficulty, it turns out, may be required for health. That’s because
health doesn’t result solely from the instructions your genome contains,
but from your relationship with the wider world. Resilience isn’t
completely inherent to your body; it’s cultivated by outside stimuli.
And some of those stimuli just happen to be mildly noxious, slightly
stressful chemicals in plants.
Moises Velasquez-Manoff is a science writer and author of An Epidemic of Absence: A New Way of Understanding Allergies and Autoimmune Diseases. He lives in California.