Wednesday, July 25, 2018

Ringmakers of Saturn 2 - Purpose




The purpose of this whole treatise is to establish a compelling reason for further investigation.  This chapter spends a lot of time establishing an understanding of the scales involved.  Not said is the immense amount of material actually held within those rings.

Also not said is that we have never produced a creditable explanation for the physics of those rings, although once established, they are obviously stable enough to keep all that material from decaying back into the primary.

So now explain how they can be produced from natural sources?.   This is clearly a zone of orbital stability, but how do we fill it?

The mere existence of those rings begs our understanding of planetary genesis and may actually be the most direct evidence of non human intelligence that we have to hand.  This is really important then once we readjust our sense of scale to these levels.  After all building in essentially a gravity free environment allows the creation of machines the size of our moon.  It just costs time and the use of gravity technology i have already come to understand as feasible.

The primary mission of mankind is to Terra form Terra.  However we are also in position to also do the same with Venus.  This will demand the creation of a Moon similar to our own.  All this should allow you to expand your thinking.  This would provide a home for an additional one trillion humans.


 Ringmakers of Saturn


CHAPTER 2

Acclimation to Huge Immensity

Incredibly large and powerful objects exist in the universe. As a class, the largest and brightest single objects are star-like radio sources called quasars. An example is quasar 3C-273, estimated to be about a lightyear* across and to produce energy equivalent to about 10 trillion suns.

This object is located so remotely that its signals, traveling at the speed of light, require about 30 million centuries to reach earth. Indeed, the universe is a place in which huge immensity abounds. Memory of this characteristic is essential when shifting thought from familiar terrestrial physical sizes to unfamiliar, extraterrestrial ones.

Being only about 1/1000 light-year across the outermost planetary orbit, our solar system is small compared with the size of quasar 3C-273. Yet spatially, the solar system is quite immense. For example, the distance between the sun and its outermost planet Pluto is 3.7 billion miles. Sunlight requires about 5 1/2 hours to journey there; and a spacecraft traveling at only 34,000 miles per hour would require 1 1/4 decades to make the same trip. In the solar system, 9 planets orbit the sun. These bodies are enumerated in Table I to illustrate comparative size and position.

In Table I, Mercury, Venus, Earth and Mars comprise the inner planet group which orbits nearest the sun. Jupiter, Saturn, Uranus, Neptune and Pluto constitute the outer-planet group. An asteroid belt, not included in the table, lies between the Mars-Jupiter orbits and  serves to mark separation between the two groups. Diameters of all the inner planets are less than one percent that of the sun. Earth slightly out-ranks Venus in size with a diameter of nearly 1/100 (0.92 percent) that of the sun. Except for Pluto, all planets in the outer groups have diameters greater than 3.6 percent of the sun's. 

Of all planets, Jupiter is the largest with a diameter slightly exceeding 1/10(10.1 percent) that of the sun. Saturn is second largest with a fractional comparative diameter of 1/11 (8.7 percent). An appreciation of the relative spacing of the planets with respect to the sun can be obtained by noting time for sunlight to be received. Inner planets receive light from the sun ranging from only 3 to 13 minutes (0.05 to 0.21 hours). In contrast, outer planets receive light ranging from about 3/4 to 5 1/2 hours. As between Earth and Saturn, the time differential for a light signal is almost 1 1/4 (1.32 minus 0.14) hours. This time corresponds to the shortest orbital distance between the two planets of 8.55 (9.55 minus 1.00) astronomical units, or 794.3 million miles.

TABLE I
Comparative Size and Position of Planets in the Solar System

 By earth standards, the approximate 800 million miles to Saturn is an immensely large distance. Voyager 1 traversed approximately this distance and took over 3 years and 2 months to do so. Voyager 2 on its journey to Saturn traversed about 1.4 billion miles, a journey requiring slightly more than 4 years. Historically, these accomplishments are superb. However, limited speed and load-carrying capability of 20th century spacecraft preclude extensive excursions in or beyond the solar system. Significant improvement in this restricted ability to travel extraterrestrially awaits the application of nuclear power to space flight-propulsion systems.
Technological limitation is not the only impediment to space exploration. There is also the problem of sustained economic support for long, expensive space flights. These severe restrictions suggest strongly that more should be expected from space flight than extensive data generation. Data analyses are the key. Analyses must be directed toward pin-pointing, in a timely manner, specific worthwhile objectives for succeeding flights. A long wait, say 10 years, before data from a flight are digested comprehensively, does not permit plans for subsequent flights to benefit very much from prior experience.
Apropos, six years after launch, Voyager flights returned no compelling reasons for undertaking further flights to Saturn or to any other part of the solar system. [ !!! arclein ]

The purpose of this treatise is to demonstrate that compelling reasons indeed do exist for urgent further exploration of Saturn and environs. Therefore, let us focus now on the Saturnian complex and concentrate attention there.
Since the Galilean period nearly 400 years ago, Saturn's most notable feature has been its rings. These rings span 22 earth diameters and extend on either side of the planet an equivalent of 1.13 Saturn diameters. Sufficient consistency in plan-form of the ring plane has been displayed over time such that designations could be assigned to various regions. Starting from the outer edge of the ring plane and progressing inward, four rings have been designated: A, B, C and D.

A narrow separation occurs in the outer extremity of the A ring called the Enke* division, after the discoverer Johann Enke. The A and B rings are considered non-contiguous, being separated by a space called the Cassini division after the Italian-born French astronomer. The inner edge of the B ring also constitutes the outer edge of the C ring. The D ring fills a space from 1.1 Saturn radii to the inner edge of the C ring, a ring having a so-called "crepe" texture. Additional radial designations are not consecutive, owing to the chronological order of discovery. For example, before Voyager 1, a faint ring located between about 3 and 8 Saturn radii had been assigned the next alphabetical designation, E.
Then Voyager 1 found two rings between the A and E rings. These latter two rings have been designated F and G, with the F ring being innermost.
Photographic imagery from Voyager 1 has credited Saturn with 15 satellites, or moons. Voyager 2 added several more. Of the entire total, only 8 are spherical bodies, the remainder all being irregularly shaped.
Enumerated in progressively outward orbital locations from Saturn, the spherical satellites are: Mimas, Enceladus, Tethys, Dione, Rhea, Titan, Iapetus and Phoebe. The first four, Mimas, Enceladus, Tethys and Dione, lie within the radial expanse of the E ring. Rhea, at 8.7 Saturn radii, orbits closely outside the E-ring outer edge (8.0 Saturn radii). Titan, Iapetus and Phoebe are quite remote, being at about 20, 59 and 215 Saturn radii, respectively. Practically all irregularly-shaped satellites occupy the zone between the A and G rings. Two of these, 1980S27 and 1980S28, are unique in that they orbit tightly astraddle the F ring. This particular pair has been designated "shepherding" satellites.
*Also called by some authors the Keeler division or gap, for American astronomer, James E. Keeler.

(a) Rings
(b) Spherical Satellites
Plate 1: Rings and Spherical Satellites of Saturn. Radius of Saturn is 60,330 km (37,490 mi).
Saturn's rings and spherical satellites are summarized pictorially in Plate 1, parts (a) and (b). Part (a) shows the relative spacing of the rings with their classical nomenclature. Part (b) shows spherical satellites in their relative orbital spacing. Mimas, Enceladus, Tethys, Dione, Rhea and E ring are close to Saturn compared with the outer satellites Titan, Iapetus and Phoebe. Considering the Saturn-system boundary defined by the orbit of the outermost satellite Phoebe, the system diameter is 26 million km (16 million mi). Also equivalent to 0.17 astronomical units, the system span measures about half the distance between the Sun and the innermost planet Mercury (0.39 AU).
Saturn is an order of magnitude larger than Earth. Yet Saturn is regarded with wonder and astonishment, not because of its large size, but because of perplexity aroused over its dramatic rings. A widely held, popular view is that ring divisions are always located in the same place. This mythical view persists despite observational reports indicating significant variability in ring-division location. An exemplary case in point is the Enke division. After Professor Enke's announcement concerning discovery of a gap in the A ring, some observers could not find the alleged separation at all. Others who succeeded reported the gap located at various distances inboard of the A-ring outer edge. Distance of the Enke gap inboard from the A-ring outer edge can be expressed non-dimensionally as a fraction of the entire A-ring radial width.

Fractional-distance locations of the Enke gap inboard of the A-ring outer edge show appreciable variation as follows: 0, 1/4, 1/3, 2/5 and 1/2. According to these data, constancy of location within the A ring definitely is not an attribute of the Enke gap.3
There have also been indications of other variations in ring geometry. Different ring-plane thickness values have been reported as well as different values for width of the Cassini gap. Cassini gap-width variation, as much as 33 percent, reflects time-variant radii for the firing outer edge and the A-ring inner edge. An impression is conveyed that latest reported measurements purport to be the true ones when, in reality, all might be quite nearly correct at time of observation. General reluctance to accept variable ring-system geometry occurs because of apparent failure to identify a physical mechanism suitable for producing recurrent change.

Presented in Plate 2 is a photograph of Saturn exhibiting circularly complete rings. The elliptical appearance of the rings is due to the angle at which the ring plane is viewed. Near the ends of the major axis of the ring ellipse, the Enke division can be identified by a short, dark arc. By scaling the photograph along the ring major axis, the Enke division is found located a fractional distance of 1/5 the A-ring width from the ring outer edge. This value is at the low end of the historical range ofreported values.
 Plate 2: Saturn, second largest planet in the solar system, exhibiting circularly complete rings.3
Separation of the A and B rings by the Cassini division also is evident in Plate 2. This division shows as a clear space across the face of Saturn, then as a dark and broad continuous arc throughout the remainder of the ring. Ratio of the A-ring breadth to the B-ring breadth scales 3 to 5.
On the same scale, Saturn is 21.6 units in diameter. For an equatorial diameter of Saturn equal to 120,660 km, apparent width of the A and B rings is about 16,750 km (10,400 mi) and 27,930 km (17,350 mi), respectively. Distance of the Enke division from the A-ring outer edge is calculated to be 3350 km (2080 mi). Obviously, large distances photographically are compressed into an exceedingly small space. The A ring illustrates well this high degree of compression. Width of the A ring is equivalent to about an 18-hour non-stop jet flight between Montreal, Canada and Melbourne, Australia. Yet in the photograph, this great distance is represented by only 6/10 cm (1/4 inch). Mental cognizance and retention of this high-compression characteristic during examination of subsequent photographs is helpful to their comprehension.

No comments:

Post a Comment