Thursday, July 26, 2018

Ringmakers of Saturn chp 3 Interstellar Reaction Mass.

What is established immediately is that luminous source associated with the rings have a long history essentially confirming their reality.  These repeatedly occurred in voyager 1 imagery as well.  They are as real as the rings.

I do not have the images here, but please download the source file itself in PDF and have it available for this chapter to see the actual evidence.

 Note this random comment as well.

Dr Bergrun isolated the astronomical data from the 1970's etc era that plainly showed huge ships in Saturns rings - the same kinds of ships spotted by the 21st Century NASA cassini probe in its saturn flyby .. totally vindicating Bergrun who had to have taken some flack over the decades from the usual suspects .. but are they making saturns rings or are they mining out the flat sea of pre-ground minerals ? 

Now all this has been available for decades now and confirmed with a recent pass as well.  The photo i used here is from Hubble.  I have only recently become aware of all this and it is obvious that it has been studiously ignored.  Even the garbage flak crowd are mostly absent.  They cannot even call the man names.

Let me explain just what you are seeing here.   Saturn is used to supply reaction mass for massive interstellar transport ships which look just like those cylindrical vehicles been used to seed the rings.   Those vehicles are also likely habitats as well.

What i mean by that is that they will have a central axle running the full length from which suspension cables will be hung in both directions.  The device is spun up to produce a natural acceleration akin to gravity.  By being a elongated cylinder, a population of billions can be accommodated.  Recall when i did the necessary calculations a decade ago, i understood that a mile radius would work really well for us even using a sphere to sustain an internal atmosphere.  Enlarging that idea to a larger cylinder and then stretching it hugely appears now to be completely possible in terms of space engineering.   Again we have something that i readily imagined then revealed as a fully extended conceptualization.

What we are not seeing is the large craft that are plunging down into the Saturn atmosphere to collect compressed gases and returning back to the seeding craft.  They would bring back a solid form of the material that would be like ice..  This is what it then used to seed the rings.

The purpose of these rings is to resupply reaction mass to similarly sized generational ships passing through and preparing to alter their trajectory.  We in fact saw one doing just that.

We already knew we were part of a galactic based civilization.  We now understand just how massively it has already been engineered already.  If mankind ever needs to flee our sun, the hardware will be waiting. 

These interstellar ships are never cut off either as personal transport is available using wormholes.

One little detail folks. Only a scant selection of photos are made available.  The author had the standing to look at every photo available and if any such photo could disprove the thesis, they are not there. 




Saturn's Rings Explained

Luminous sources at Saturn have been observed, notably by Herschel, Knight and Ainslie. In one instance, a fiery source moved suddenly away from the A-ring outer edge. In another unrelated instance a bright, elongated source pursuing a straight-line course entered the A-ring outer edge, traversed the Cassini division, and exited the opposite A-ring outer edge. After these dramatic events, luminous sources did not become a specific subject of inquiry as might be expected - that is, until this analysis many years later.

Plate 3: A luminous source appears in the A-ring of Saturn.

A number of luminous sources appear in Voyager imagery. One of these sources, located in the A ring, is documented in the photograph of Plate 3. A pointer locates this source which appears as a small reddish-orange spot. In the picture, the A and B rings readily can be identified; and even some of the faint C ring can be distinguished. The Cassini division, pointed to in the upper left corner of the picture, clearly is formed by a separation between the A and B rings.

Diagonally in the opposite corner below the luminous source, a comparably formed Cassini division is absent. The B-ring outer edge is complete. However, between points (1) and (2), the A ring is nowhere to be seen. A segment of the A ring appears strangely terminated across a chord of the entire ring system. Absence of this ring segment is addressed subsequently.

Because of the shallow view angle of Saturn's rings in Plate 3, the distance between points (1) and (2) appears very highly compressed. As a result, the immense length of the ring-segment chord is not readily comprehensible. To aid comprehension, Plate 4 conceptualizes the incomplete A ring in a polar view of Saturn's northern hemisphere.

Earth profiles are introduced to provide a familiar reference measure.

Plate 4: Conceptualization of the incomplete A-ring in a polar view of Saturn's northern
hemisphere, using Earth as a comparable reference measure.

Line-of-sight is perpendicular to the ring plane so that all rings appear in true relative proportion. The length of the ring-segment chord is greater than Saturn's diameter. This fact is illustrated by projection of parallel dotted lines from Saturn to the chord. These dotted lines intersect the ring chord within the cut-off segment of the A ring. The Enke division, placed at 2/5 the A-ring width from the outer edge, can be seen to intersect the chord at nearly the same points as the projected dotted lines. The distance subtended by the entire chord is equivalent to slightly over 10 earth diameters. Only about 6 earth diameters comprise the radial distance from Saturn's surface to the A-ring outer edge. Other distances also can be compared. For example, the radial span from the inner edge of the A ring to the outer edge of the Enke division is about one earth diameter. Span of the Enke division is expressed by a mere line width inasmuch as this gap is only about 200 km (125 mi) across. Radial span of the Cassini division is about 0.3 earth diameter. As before, Saturn's diameter is 120,660 km (74,980 mi). Circled numerals cross-reference the corresponding numerals shown in Plate 3.

 Plate 5: Efflux from along the length of a slender body, exhausting at both ends, generates
the A-ring.

When the photograph of Plate 3 is enlarged in the vicinity of numeral (1), the information of Plate 5 is obtained. In Plate 5, efflux from along the length of a slender body exhausting at both ends generates the A ring. The luminous source seen near numeral (2) in Plate 3 appears at the left edge. 

Inspection of Plate 5 indicates that a slender body is orbiting clockwise and, in doing so, deposits a wide trail. This trail, which can be recognized as the A ring without the Enke division, is generated by efflux emanating from nearly the entire length of the body. While most of the efflux is generated along the top, some also appears to begin underneath and along the body sides in the form of streamers. These streamers pass over the side toward the right, proceed above the body and contribute to the A-ring trail. Presence of exhaust flames from each end of the body and the bulgy appearance of the streamers as they pass over the body suggest a circular cross-section for the body.

A light source, somewhat greater in diameter than the body, is positioned below the right end. This source is attached to the body with inter-connecting emissions turning to an orange-red arc along the top edge.

Emissions from the body can be viewed collectively as creating a net force on the unit. According to one of Isaac Newton's laws of motion, forces can occur only in action-reaction pairs. The reaction of the body to the action of the emissions is to move the body, presumably in a direction so as to complete the ring. This physically inherent mobile capability is justification for calling the body a vehicle*. The ratio of apparent body length to thickness, called apparent fineness ratio, is about 13 to 1.

Absolute dimensions corresponding to fineness ratio 13 can be estimated. Consider that the vehicle lies along the chord identified by numeral (1) in Plate 4, and that the vehicle extends from the A-ring inner edge to the Enke-division inner edge. By scaling the illustration in Plate 4, the body length is found to be about 0.3 Saturn diameter, or about 36,200 km (22,500 mi). This length corresponds to about 3 earth diameters. Based on a 13 to 1 fineness ratio, the body diameter can be deduced to be 2785 km (1730 mi). This distance is about the same as the airline distance from San Francisco, California to St. Louis, Missouri on the Mississippi River. Such an immense propulsive body implies a space engine possessing unheard-of capacity and capability.

When the photograph of Plate 3 is enlarged in the vicinity of numeral (2), the information of Plate 6 is obtained. In Plate 6, a second slender vehicle forms an A-ring trail which includes a luminous source. This source is the same one identified in Plates 3 and 5. Breadth of the source is estimated to be about half the distance between the A-ring inner edge and the Enke-division inner edge. This sizing places the breadth of the luminous source at about 5600 km (3480 mi). This distance is slightly over 1 1/2 times the diameter of earth's moon and about the same as the airline distance between New York and London. The large magnitude attests to the vast energy powering the engine of the slender space vehicle.

 *See Appendix.

Projecting from beneath the luminous source in Plate 6 is a wire-like arm which curves upward into the foreground toward the left. At about 1/3 of its length from the bottom, the arm has a bulge in it. This bulge appears to be a doughnut-shaped formation, or toroid through which the arm passes. Presence of a toroid indicates that the arm is acting as a conductor carrying electricity. Such an indication is given because physically a circular conductor of electricity has, in cross section, magnetic-field lines consisting of concentric circles (i.e., circles with a common center). 

 Plate 6: A slender vehicle forms an A-ring trail which includes a luminous source.

Magnetizable matter caught in such a field will align itself concentrically with the conductor and collectively assume a toroidal shape. Diameter of the conductor is in the neighborhood of 350 km (220 mi). Length is of the order of 4000 km (2500 mi). Without this arm, maintenance of the luminous source probably would be impossible.

Scaling the vehicle in Plate 6 yields an apparent fineness ratio of about 13 to 1, the same as for its companion vehicle in Plate 5.

Orientation of the trails from both vehicles suggests that the two are moving toward one another, apparently on a collision course. A collision would not occur, of course, were the vehicles in different planes or were one to surrender its position to the other. Preference is for the latter. Excluding bulb luminous sources, Plates 5 and 6 tend to show that vehicle diameter is an approximate measure of thickness of the A ring at inception. For the time frame shown then, maximum ring thickness inferentially would be of the order of 2785 km (1730 mi).

Obviously, at large distances from the vehicle, at the ring edges and for old trails, the ring would be expected to be much thinner and more diffuse.

Plates 3, 5 and 6 confirm the early observations of moving luminous sources by Herschel, Knight and Ainslie. Herschel is credited with a source of variable luminosity, possibly of a fiery character. Knight and Ainslie reported a luminous source as bright as a star. Both descriptions fit acceptably well that which is discerned from the three plates.

An additional commonality exists between the Knight-Ainslie event and the two vehicles in Plates 5 and 6. Specifically, the chordal path of the Knight-Ainslie moving source is the same chordal element defined by the location and orientation of the two vehicles. Whether these chords are in the same approximate position around the ring is beyond the scope of this inquiry.

Plates 5 and 6 reveal that width of the Cassini division occurs neither accidentally nor with exact repeatability. The reason is that the basic spacing depends upon the radius at which a mobile vehicle orbits with respect to the B ring. Even though this orbital radius might be constant, a substantial degree of variability in character of the trailing flux can alter the radial location of the inner edge of the A ring. Also, the extent of flux emission along the length of a vehicle can influence the width of the Cassini division. These possibilities for differences explain the variability in measurements by different observers over the years. Fairly narrow tolerances, astronomically speaking, on the radius of the B-ring outer edge and the A-ring inner edge have led observers to conclude that the Cassini division is a true gap. That the Enke division is a true gap has been doubted because of its apparent absence from time to time. Actually, the Enke division is formed in the same manner as the Cassini division and in this sense, the Enke gap is just as true a one as the Cassini gap.

Plate 7 shows formation of the Enke division. In the plate, the A and B rings as well as the Cassini division can be recognized. Once again, a vehicle is found depositing an orbital trail. Efflux emanating primarily from the radially outboard 2/3 of body length is responsible. Clearly, were the vehicle located at a slightly shorter radius, the gap would be lessened. Widths reported for the Enke division range from approxi-mately 200 to 320 km (125 to 200 mi). Nominally, this gap width is equivalent to a variation in orbital radius of only about 1/4 of one percent. The implication is that orbital radius of vehicle position is set very precisely in order to have a gap produced. Inspection of the vehicle reveals numerous jets issuing from many different positions around and along the body. A fan of three jets appears to form the inboard part of the trailing efflux. Each jet appears to consist of a series of bulbous swellings. Such swellings are indicative of the form of electricially charged flows known as pinched plasmas. Length of the vehicle appears to be about 10 times its diameter. A dark jet crossing the body near the left end makes the vehicle appear as though there are two sections aligned longitudinally. In reality, the vehicle is integrally one. An attempt at sizing yields an apparent length of about 4700 km (2900 mi) and a diameter of 470 km (290 mi). Diameters of issuing jets are of the order of 0.1 to 0.2 body diameter, or about 47 to 94 km (29 to 58 mi).

 Plate 7: Formation of the Enke division.

Numerous photographs have been examined with special attention being given to the outermost region of Saturn's A ring. The search produced another vehicle at the outer edge of the Enke gap

This second vehicle, shown in Plate 8, substantiates the process by which the outer A ring and the Enke division are formed. In the plate, the Cassini division, the entire breadth of the A ring and the Enke division can be discerned. The outer annulus of the A ring, defined by the Enke division and the A-ring outer edge, again is found to consist of a trail deposited by a slender vehicle. As before, efflux emitted from around and along the body is the source of the trail. Were the same profuse efflux to occur completely along the vehicle length, little separation would prevail between the new trail and the older, inner A-ring deposits. Geometry of the trail and vehicle radial location produces an Enke division whose centerline is located inboard from the A-ring outer edge about 1/5 the A-ring width. Apparent fineness ratio of the vehicle is 13 to 1 as compared with 10 to 1 for the vehicle of Plate 7.

Plate 8: A second vehicle substantiates the process by which the outer A-ring and the Enke
division are formed.

Sizing yields a length of about 5200 km (3200 mi) and a diameter of 400 km (250 mi). While the two vehicles roughly are comparable in magnitude and quite similar in certain respects, they also have differences. A notable difference is that the instant vehicle seems to have a longitudinal exhaust whereas the previous one very definitely does not. Differences in length and longitudinal body-flux distribution lead to a difference in width of the Enke division. For the shorter vehicle, Enke-division width is about one percent of the distance between the A-ring inner and outer edges. For the longer vehicle, the Enke gap width is about 6 percent of A-ring width. Nominal values reported are in the range of 1 1/2 to 2 percent. A conclusion is reached that the A-ring outer annulus can be constructed with vehicles having different lengths and emission patterns. Therefore, the Enke gap can be located almost anywhere, or not at all, within the A ring depending upon length and positioning of the vehicles forming the inner and outer annuli. In view of this possibility, the difficulty of early observers in pin-pointing a single radial location for the Enke division is now readily understandable. Inability to obtain unanimous opinion for ring thickness is also explained.

Formation of the Cassini division might be expected to follow a development pattern similar to the Enke division. Specifically, a vehicle should exist which spaces the B ring inboard of the A-ring inner edge so as to form the Cassini division. That this expectation is realistic can be shown by Plate 9. In this plate, a partially developed ring system is shown exhibiting a cylindrical vehicle positioned across the B ring.
An apparent included angle of about 30 degrees is formed by two imaginary lines having a point of intersection on the ring's outer edge.

Plate 9: Partially developed ring system exhibiting a transversely positioned cylindrical vehicle i
the B-ring.

One line is the vehicle longitudinal axis and the other, a line perpendicular to the outer ring edge (i.e., a radial line) at the point of intersection. Body angularity less than 90 degrees with respect to the radial direction indicates that the vehicle occupies a slewed position within the ring. A slewed position is consistent with that observed for vehicles located in the inner and outer A-ring annuli. In Plate 9, ends of the B-ring vehicle are labeled. At the left end, a short length of axial exhaust is detectable. An implication is that condensed and solidified exhaust products are the primary constituents of the C ring. At the right end, the axial exhaust stream can be identified passing through the A ring. Penetration of the stream through the A ring vaporizes in-path material and renders the ring discontinuous. Also at the left end, three bulbous jets of matter are ejected. Towards the right end, three more bulbous jets emerge from a small common area. Quite likely all the bulbous jets are pinched plasma formations inasmuch as the presence of substantial heat in exhaust products is indicated. Emissions at other body locations are identified in the plate. All the ejected matter, except for the right-end bulbous jets, provides intimate substance and texture to the B ring. The right-end jets rise above the vehicle, form an arch and connect with the A ring. Apparent fineness ratio of the body is in the neighborhood of

13 to 1. Rough sizing places vehicle length at about 29,500 km (18,300
mi) and the diameter at 2250 km (1400 mi).

 Plate 10: Emitting vehicle stationed outside the A-ring encompasses the F-ring location.

That vehicles do not confine themselves only to positions in the A and B rings is illustrated by Plate 10. Shown in the plate outside the A ring is an emitting slender body positioned near the F-ring location.

Axial exhaust appears to emanate from the body ends, locations of which are identified. Issuing from topside at the right end of the vehicle is a long streamer which extends leftward toward the A ring. This long streamer and the axial emissions are primary contributors to a massive cloud which forms in the vicinity of the vehicle. Secondary contributors are jets discharging laterally (not labeled). Highest cloud density occurs below the A ring near the right edge of the photograph.

This occurrence suggests a long axial exhaust emission which, owing to very elevated temperature, requires a considerable distance before the  constituents reach the cloud-forming condensation point. Lowest cloud density occurs below the body, attesting to the comparative minor nature of lateral and downward emissions. Intermediate cloud density is displayed between the trailing streamer and the A ring. In the vacuum of space where the environmental pressure is practically zero, a cross-flow can occur only because of an electrical pressure difference between two points. An electrical pressure differential causes electricity or electrons to flow from the higher pressure to the lower one.

These flowing electrons necessarily must come from a highly ionized volume of matter, an obvious source of which is the vehicle. This  situation again points to the reasonable presence of pinched plasma formations. Overall cloud breadth is estimated to be of the order of 3 earth diameters. Apparent fineness ratio of the vehicle is about 12 to 1.

In summary, the A and B rings are formed by slender mobile vehicles trailing massive efflux. The Cassini division and the Enke gap within the A ring are created simply by definite radial spacing of the respective formative bodies. The C-ring and the F-ring formations apparently depend upon the presence of a nearby vehicle. At birth, the A and B rings appear to have electromagnetic properties. In view of the generating mechanism, heretofore confusing variations in observational results now become explicable.

No comments: